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Abstract 

Land use regulation may affect housing prices through housing supply and demand, but the empirical 
literature conflates both effects and finds wide variation in the estimated impact. We disentangle three 
channels through which regulation may affect housing prices: the production channel through housing 
supply, the amenity channel through housing demand, and the general equilibrium (GE) channel that 
captures price feedback effects on location choice. We develop a GE model with households’ choices 
on consumption and location and with housing developers’ choice on housing production. Our 
theoretical model delivers a closed-form solution to the equilibrium prices and a simple form of the 
estimation equations. Using property transaction-assessment data from 1993 to 2017 in California and 
a regulatory index compiled from the Wharton Residential Land Use Survey (Gyourko, Saiz and 
Summers, 2008), we structurally estimate and disentangle the supply and demand-side effects. We find 
that the regulatory impact on housing prices through the production channel is much stronger than the 
amenity channel (4.38% vs 0.32% if referenced to the average city in California) and is heterogeneous 
across cities. The relationship still holds, even when the GE effects are included in the two channels 
(3.24% vs 0.27%). The total effect of regulation will be 4 times larger, if referenced to the average 
regulation in the US. Our estimations point out the key roles of structural characteristics of housing and 
macroeconomic conditions in the prediction of housing prices. Estimations without quality adjustment 
underestimate land regulation’s impact on prices. Additionally, we examine the within-MSA regulatory 
interdependence and find significant and positive spillover effects of regulation on housing prices. 
Estimations without spillover consideration underestimate the regulatory impact on prices.  
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1. Introduction 

Since the US Supreme case of Euclid v. Ambler (1926), land use regulation has been central to the 

debates of housing affordability and economic growth.1 While land use regulation makes housing less 

affordable by tightening supply constraints (Glaeser, Gyourko and Saks, 2005a, 2005b; Saiz, 2010), it 

may also increase environmental amenities and thereby raise housing demand (Hamilton, 1975; Fischel, 

1990; Gyourko and Molloy, 2015). Land use regulation may even go beyond localities and exert impacts 

on multiple jurisdictions (Pollakowski and Wachter, 1990). The empirical literature finds a wide 

variation in the estimated impacts of land use regulation on housing prices (Quigley and Rosenthal, 

2005). In part, the variation in estimated impacts is due to conflating supply and demand-side effects.  

 We contribute to the literature on land use regulation’s impact on housing prices in several ways. 

First, we base our empirical analysis in a general equilibrium framework with household mobility across 

geographical markets. We include households’ decisions over consumption and location together with 

developers’ housing production decisions. We incorporate multiple transmission channels of regulation 

on prices that result from this general equilibrium framework. Land use regulation and per capita income 

are key pricing factors, with the quadratic and interactive effects micro-founded in the model. Our 

theoretical model delivers a closed-form solution to the equilibrium prices and a simple form of the 

estimation equations.  

We characterize and disentangle three channels through which land use regulation may affect 

housing prices. The first channel of the regulatory impact goes through housing supply and the effect is 

local. We call it the production channel, because regulation increases the cost of housing supply and the 

local housing prices. The second channel goes through housing demand and the effect is also local. We 

call this the amenity channel, because regulation boosts amenity values and the housing demand, leading 

to an increase in the local housing prices. There is a third channel related to the household location 

choice. We call it the general equilibrium (GE) channel, because it captures the price feedback by taking 

household mobility into account. Tighter regulation that makes housing more expensive will drive 

housing demand to the neighboring cities. We also calculate net production and amenity channels that 

incorporate the GE effects.  

Our empirical analysis is based on structural estimations using Generalized Method of Moments 

(Hansen, 1982). We use the structural estimates to quantify how different channels respond to the 

regulatory change by city level over the period 1993 through 2017. We base our measure of regulatory 

constraint using the Wharton Residential Land Use Survey (Gyourko, Saiz, and Summers, 2008). We 

estimate city-level land use regulation effects after controlling for individual property-based housing 

characteristics, metro level per capita income and national credit supply. The average marginal effect of 

                                                        
1 The case of Village of Euclid, Ohio v. Ambler Realty Co. set the precedent of new zoning practice and served to bolster 
local zoning ordinances nationwide. For the details of Euclid v. Ambler, see Fluck (1986).  
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regulation on housing prices through all channels is about 3% in California (with the average California 

city as the regulatory reference point) which consists of 4.38%, 0.32% and -1.73% from the production, 

the amenity and the GE channels respectively (or 3.24% and 0.27% from the net production and amenity 

channels). The housing price responses through the amenity and the GE channels to a unit increase in 

regulation are small (0.32% and -1.73% respectively). If referenced to the average level of regulation in 

the US, the total regulatory effect will be 4 times larger. The heterogeneous regulatory impacts across 

MSAs are mainly driven by the response through the production channel. San Francisco, San Jose, Los 

Angeles and San Diego MSAs have the largest production effect, more than 50% larger than the MSA 

average response through the production channel (3.22%). The net production and amenity channels 

that incorporate the GE effects are smaller. The price responses through the net production channel of 

San Francisco, San Jose, Los Angeles and San Diego MSAs are 4.58%, 4.57%, 3.55% and 3.29% 

respectively, while the response through the net amenity channel is 0.27%. Among the studies with 

standardized regulatory measures, our estimates of the net production effect are larger than those of 

Quigley, Raphael and Rosenthal (2008) on the regulatory impact on prices in San Francisco Area (1.2%-

2.2% in OLS and 3.8%-5.3% in IV estimations).  

Our empirical estimations point out the key roles of structural characteristics of housing and 

macroeconomic conditions in the prediction of housing prices. Instead of hedonic price indices, we use 

property transaction data together with housing characteristics in the empirical analysis for housing 

quality adjustment. Our method has smaller standard errors in estimation than the index approach. We 

show that aggregate analysis using the housing prices without quality adjustment underestimates the 

marginal impact of land use regulation by about 33%. We find macro variables are empirically important 

to predicting time-series movement of housing prices. For example, a one percentage point increase in 

real GDP per capita is associated with 1.3% increase in housing prices and. a one percentage point 

increase in the growth of household mortgage debt and the 30-year fixed rate mortgage rate leads to 

2.88% and -2.59% change in housing prices respectively.  

In addition to identifying and measuring regulatory effects decomposed into supply and demand 

effects for metro areas, we take a more granular view to explicitly examine the within-MSA 

interdependence of land use regulation among cities. We define the difference between neighboring and 

home regulatory indices as a relative restrictiveness index, whose marginal contribution to the housing 

prices measures the spillover effect of regulation. We examine 4 major MSAs selected for their data 

coverage. We show a robust finding that the regulatory and the spillover effects on housing prices are 

significant and positive. For the relative restrictiveness indices that weigh the neighboring regulatory 

impacts in different model specifications, leaving the spillover effect out of the analysis tends to 

underestimate the regulatory effect on housing prices in the home city. 

We aim to establish a direct mapping from the theoretical model to the empirical estimates. We use 

multiple data sources for the data counterparts in our theory. We obtain residential property transaction 
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data in California based on a property-level transaction-assessment dataset from the Zillow Group. We 

control a comprehensive set of housing characteristics (the number of bedrooms/bathrooms, distance to 

CBD, indicator of single family residential/condominium, square foot, property age). The data on GDP 

per capita is calculated based on the regional/MSA dataset from Moody’s Analytics. To deal with the 

endogeneity issue of the GDP per capita, we construct demographic variables from American 

Community Survey as instruments, including mean household age, share of high education and share 

of high-tech jobs. In addition to the housing characteristics, we control macro variables including the 

growth of household mortgage debt and the real 30-year fixed rate mortgage rate for goodness of fit 

along the time-series dimension.  

We examine 179 cities in the metro areas from 185 cities surveyed in California in the Wharton 

Residential Land Use Survey (Gyourko, Saiz and Summers, 2008). We use principal factor analysis to 

quantify the intensity of land use regulation by creating a unidimensional index of regulation intensity, 

and to quantify the factorial contribution of the underlying sub-indices. The housing sample matched to 

the Wharton survey include more than 5 million transactions, ranging from 1993 to 2017 in 25 MSAs.  

The organization of the paper is as follows. Section 2 reviews the literature. Section 3 sets up a 

spatial equilibrium model of land use regulation with endogenous housing prices. Section 4 describes 

the data and summary statistics. Section 5 maps the model to the structural estimation. Section 6 

discusses the decomposition of the regulatory effects through the production and the amenity channels. 

Section 7 estimates the city-level spillover effects, followed by the conclusion in Section 8.   

 

2. Literature Review 

Spatial equilibrium models in urban economics date back to the pioneering work by Rosen (1979) and 

Roback (1982) and is enriched by Glaeser and Gottlieb (2009). There are two types of theoretical models 

related to the impact of land use regulation on housing prices, Brueckner (1990) and Engle, Navarro 

and Carson (1992) propose amenity models with negative population externality in the utility. 

Regulation mitigates negative externalities and boosts housing prices. The analysis holds only under the 

small-city assumption, with no role of the supply constraint of land. On the other hand, Brueckner (1995) 

does propose a supply-restriction model that puts constraints on the developable land and emphasizes 

supply constraints in housing price determination. Our theoretical model has both demand- and supply-

side regulatory implications on housing prices.  

In the discussion of the geographical interdependence of land use regulation and housing prices 

across regions, Pollakowski and Wachter (1990) first introduce the concept of the spillover effect in the 

housing market. Tighter growth controls in the neighboring area will increase the home housing prices 

through housing demand. Our theoretical model formalizes the idea by means of the location choices of 
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households.2 Our empirical method improves the estimations of Pollakowski and Wachter (1990), in 

the sense that we use a more comprehensive regulatory measure and make housing quality adjustment 

in the estimation that is infeasible in the construction of the price indices in previous study.3 4 We show 

that the city-level spillover effect is strong but the regulatory implications are quite heterogeneous across 

metro areas.  

Empirical models vary greatly in their data and methods and their results are not directly 

comparable as pointed out by Quigley and Rosenthal (2005). The regulatory factors used in empirical 

analyses vary across studies with different linear or non-linear scales, making the evaluation of the 

marginal effects of regulation on housing prices more case-by-case.  

Most studies develop a regulatory index and find positive and significant regulatory impact on 

housing prices. Pollakowski and Wachter (1990) construct a regulatory index as the weighted sum of 

land in various zoning categories. Jackson (2016, 2018) apply the same method to California Land Use 

Survey (Mawhorter and Reid, 2018). Quigley and Raphael (2005), Ihlanfeldt (2007) and Glaeser and 

Ward (2009) focus on California, Florida and the Great Boston respectively and define the city 

regulation index as the total number of adopted regulatory controls. Kok, Monkkonen and Quigley 

(2014) study the San Francisco Bay Area and use a normalized regulatory index in their analysis. Glaeser, 

Gyourko and Saks (2005b) examine define a regulatory tax measure as the markup of the housing price 

over the marginal cost for NYC. Malpezzi (1996) and Malpezzi, Chun and Green (1998) use the 

Wharton survey of Planning and Policy (Linneman, Summers, Brooks, and Buist, 1990; Buist, 1991) to 

construct a simple sum of standardized sub-indices as the regulatory measure.5  Gyourko, Saiz and 

Summers (2008) update the original Wharton survey. They conduct a national survey with responses 

from 2,649 jurisdictions and use a principal factor analysis to construct a single regulatory index. Many 

subsequent studies use the Wharton Land Use Survey and study the regulatory impact in housing and 

land markets. Saiz (2010) estimates the housing supply elasticity as a function of physical constraints 

                                                        
2 Consistent with Pollakowski and Wachter (1990), our empirical result echoes the finding on the significant and positive 
impact of the relative regulatory restrictiveness on the housing prices. 
3 Pollakowski and Wachter (1990) use the transaction prices as the dependent variable and control the real per capita 
income, distance to Federal Triangle, Gravity Employment Index, real mortgage rate, real construction cost index and 
percentage of vacant land. They conduct a pooled cross-section time-series regression with 17 areas and 24 quarters to 
construct the real housing price indices. In comparison, we match the property transactions with the structural 
characteristics of housing and take into account the property-level heterogeneity that we find crucial to the estimates of 
the regulatory impacts.  
4 Our regulatory index and the measure of relative regulatory measures are more comprehensive than Pollakowski and 
Wachter (1990). 3 of the 8 underlying factors, the open space index and the supply restriction index and the local zoning 
approval index are close to 3 regulatory measures in the previous studies (the percent of vacant land, the development 
ceiling, the zoning index respectively), although the mapping is not identical. We use multiple measures of the spillover 
effects to confirm the robustness of our results. 
5 Malpezzi (1996) tries factor analysis as an alternative data reduction method. Because the aggregate score by the simple 
sum and by factor analysis are highly correlated, Malpezzi (1996) reports the results using the simple sum. Jackson (2016, 
2018) do the same as Malpezzi (1996) on a different dataset.  
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and regulatory measures from the Wharton survey. Turner, Haughwout and Van Der Klaauw (2014) use 

the Wharton survey to identify the local regulatory effect on the land transaction prices at the boundaries 

of adjacent jurisdictions with different regulation. Quigley, Raphael and Rosenthal (2008) uses the 

Wharton survey instruments that are adapted to California to study the housing markets in the San 

Francisco Bay Area.  

Our methodology is close to Gyourko, Saiz and Summers (2008) and Quigley, Raphael and 

Rosenthal (2008) that use principal factor analysis to define the first common factor as the regulatory 

index, achieving data reduction of multiple sub-indices. Because we focus on property sales in 

California, we use the sub-indices with within-state variation in the Wharton Residential Land Use 

Regulation Index (WRLURI) (Gyourko, Saiz and Summers, 2008) to construct the regulatory measure.6  

 

3. Model  

3.1 Household Problem 

Consider an economy with a unit mass of households. Household i values the non-durable consumption 

c and housing consumption h. We assume that the household’s preference has a Cobb-Douglas form. A 

household makes two sets of choices on consumption and the location. Given staying in city j and 

housing rent rj, Household i solves the standard consumption choice problem.7 

 1
,( ) max (1 ) ln ln    . .  ,  where i

j j c h ij j i j j j j jv r c h s t r h c Y Z A A Z φ ηα α β τ−= − + + + ≤ =   (1) 

The indirect utility of household i in city j can be written as a function of housing rent, rj. We 

assume that the household income consists of three components: an idiosyncratic household income Yi, 

a city-specific income Zj, and amenity value Aj.8 We assume that two income components, Yi and Zj, 

are independently distributed and are multiplicative for tractability of analysis.  

We assume amenity value Aj is a function of city income Zj and the regulation intensity τj. The 

value ϕ-1 controls the income elasticity of amenity demand. If ϕ > 1, the amenity value increases with 

                                                        
6 For the discussion on WRLURI, see Gyourko, Saiz and Summers (2008) and Gyourko and Molloy (2015).  
7 We assume that the expenditure on housing consumption is linear in the housing rent. There are models in the literature 
with non-linear pricing to take into account housing quality (Landvoigt, Piazzesi and Schneider, 2015). We make the 
assumption not only because linear pricing is simple and tractable for analysis, but also because we are able to use the 
housing transaction-assessment matched data with detailed structural characteristics to control housing quality in the 
model estimation. 
8 Glaeser and Gyourko (2006) point out the importance of spatial heterogeneity of amenities in housing price dynamics. 
Similar to their work, we incorporate the impact of amenities in the household utility. We incorporate the amenity in the 
model as a multiplier of the household income. With log preference, it is mathematically equivalent to a model where 
amenity creates an additive utility flow ln(Aj).  
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city income. The parameter η control the regulation elasticity of amenity demand. Amenities in the 

model serve as the demand shifter of both non-durable and housing consumption.9  

The parameter α measures the share of housing consumption relative to non-durable consumption 

in total expenditure. Βij denotes the city utility flow to an individual household; this captures personal 

preference of location and any hidden benefit unobservable to econometricians. Conditional on living 

in city j, the optimal housing consumption choice and the indirect utility function are 

 * i j j
i

j

Y Z
h

r

φ ηα τ
=   (2) 

 ( ) ln (1 ) ln(1 ) ln lni
j j j i j j ijv r r y zα α α α α φ η τ β= + − − − + + + +   (3) 

where yi = ln(Yi) and zj = ln(Zj). summarizes the city-specific value. The location choice of household i 

is thus a discrete choice problem. If household i moves to the city j among a set of cities S instead of an 

alternative city k in the choice set. Then, the utility given city j must yield the highest value.  

 
( ) max ( )

ln ln ln ln ,  for all 

i i
j j k j k k

j j j ij k k k ik

v r v r
z r z r k jφ η τ α β φ η τ α β

≠≥ ⇔

+ − + ≥ + − + ≠
  (4) 

 We assume that βij is unobservable to econometricians and it is identically and independently Type-

I Extreme-Value distributed across cities. That is, when a household makes a location choice, they can 

make decisions based on the realization of the city income, the growth controls relevant to amenity 

value, the housing price and a private signal βij about the utility flow from city j.10 The difference βij – 

βik has a Logit distribution, because the private signal is Type-I Extreme-Value distributed. The share of 

households located in city j is thus as follows.  

 ( ) ,  { }j j j
j k k S

k k kk S

Z r
q r r r

Z r

φ η α

φ η α

τ
τ

−

∈−
∈

= =
∑

  (5) 

 We can interpret the share as a standardized city index that households create to make location 

choices based on observables. As we normalize the mass of household to unity, the share of household 

living in city j coincides with the moving probability of a household to city j.  

 

                                                        
9 Glaeser, Kolko and Saiz (2001) regress the log housing price on the log per capita income and define the residuals as 
the amenity indices. Our modeling of the amenities inherits similar idea and define the non-linear piece of city income 
after taking out the linear component as the amenity value. 
10 In estimation, we will use the log GDP per capita of the MSA where city j is located as the data counterpart of zj. 
Quigley and Rosenthal (2005) says that although land use regulation is local, growth is regional. As a result, we only 
allow income variation across MSAs in the empirical analysis.  
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3.2 Housing Developer Problem 

The production of housing service needs land L as the input. In each city, we assume there is a local 

housing developer, operating a production technology with decreasing return to scale. The assumption 

motivates an upward sloping housing supply curve. The housing developer pays a license fee Fj charged 

by the local government to operate the business and pays the city-specific marginal cost cj for each unit 

of land. cj captures both the construction cost of materials and labors, and the shadow cost tied to local 

land use regulation. We assume that the housing produced each period is fully depreciated. The housing 

developer in city j solves the profit maximization problem. 

 , 0 0max    . .  ,  L H j j j j jr H c L F s t H A L c cθ τ− − = =   (6) 

where A0 > 0 is the aggregate productivity and θ < 1 controls the curvature of production technology. 

c0 is the construction cost associated with materials and labor, identical across cities.11  

The parameter τj > 0 is the intensity of land use regulation. The concept is similar to Glaeser, 

Gyourko and Saks (2005b). The more regulated the land market in city j is, the higher τj will be. 

Concretely, the parameter is a reduced-form index of regulation, taking into account the shadow costs 

of land supply elasticity, time length of permit approval, density and supply restriction etc. The 

regulation intensity τj can be interpreted as an aggregate of multiple measures of land use regulation.  

 ( ) ss
j s j

ρτ τ= ∏   (7) 

where τj
s is an underlying regulation factor and ρs > 0 is the corresponding factor weight.12 The profit 

maximization of a local housing developer leads to a land supply curve with a positive slope in city j.  

 
1

1
1
0( ) j

j j
j

r
H r A

c

θ
θ

θ
θ −

−
 

=   
 

  (8) 

Housing supply is thus increasing the productivity and housing rent but is decreasing in the cost of land. 

The local government will set the license fee Fj to charge away any positive profit, so in equilibrium, 

the local housing developer has zero profit.  

 

                                                        
11 This assumption is without loss of generality. We think the assumption is reasonable, because the construction industry 
is extremely competitive (Saiz, 2010). Gyourko and Molloy (2015) in their Figure 1 shows that the real construction cost 
is stable compared with the strong movement of the real housing prices. We can relax the assumption to allow for time-
varying construction cost. What is essential is that the construction cost is that there is no cross-sectional variation among 
cities and that it is exogenous to local changes in housing demand over time.  
12 We assume the relationship between the unidimensional measure and the underlying factors of land use regulation 
follows a product form. The log form of equation (7) will correspond to the predicted score regression in the principal 
factor analysis that we use to construct a unidimensional index from multiple measures of land use regulation.  
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3.3 Exogenous Processes 

To bridge the housing price with housing rent, we assume that the conventional user cost relationship 

between housing price pj and housing rent rj in city j holds. 

 ln ln lnj j jp r u= −   (9) 

where uj is the user cost. In the model, we take the log city income zj, and the log user cost ln(uj) as 

exogenous and time-varying. We assume that the log income zjt and the log user cost at time t have 

independent normal distributions.  

 2 2~ ( , ),  ln ~ ( , ),  ,jt z z jt u uz N u N j tµ σ µ σ ∀   (10) 

 

3.4 Equilibrium Conditions and Housing Prices 

There are two equilibrium conditions needed to satisfy to close the model. First, each household with 

random utility flow unobservable to econometricians should move to the city delivering the highest 

utility. The optimal consumption and location choices have been encoded into the moving probability 

qj(r). Second, the housing price of each city is an endogenous object. We clear the housing markets in 

all cities and solve the prices simultaneously. The market clearing condition (11) demand that we equate 

the housing demand by aggregating the individual demand (2) and the housing supply (8) in each city.  

 0( ) ( ) for all j j j j j
j

Yq r Z H r j S
r

φ ηα τ = ∈   (11) 

where Y0 = E(Yi) is the expected household income. The house demand in city j is thus the product of 

the share qj of households moving to city j and the aggregated house demand in city j.13 As is shown in 

the equilibrium condition, the housing markets are inter-linked. The market clearing condition of city j 

depends on the housing prices in other cities. Households have freedom to move and will choose their 

location depending on city-specific income and private utility flow. The impact of local land use 

regulation will spill over to the other cities through the location choice of households.  

We prove in the appendix that for an arbitrary number of cities n ≥ 2, there exists a unique set of 

moving probabilities and housing prices that clear the housing markets in n cities. In the following 

analysis, we focus on the location choice with binary options (n = 2), cities j and k. We examine the 

price determinants of a particular city j, and the city k is interpreted as the outside moving option of city 

j. It simplifies the mapping from the model to the data and makes the illustration of mechanism 

straightforward.   

                                                        
13 Because Yi and Zj are assumed independently distributed, we can integrate over the household demand and get the 
housing demand in city j. Because the individual housing demand is linear in Yi, only the first moment is needed for 
aggregation.  
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 1 1
11
0

1 1
0

     ln (1 )(ln ln ) ln

( )
where ,  ,  

( ) ( ) ) 1

j j j j

j j j
j j

j j j k k k j j j

p q b u

Z b Aq b
Z b Z b Y Z c

θ
θ

θφ η λ λ

φ η λ λ φ η λ λ φ η

θ

τ α θ θλ
τ τ α θ α τ

−
−−

− −

= − − −

 (1− )
= = =   + (1− +  

 (12) 

To understand the determinants of the housing price in city j. we express ln(pj) explicitly as follows.  

 
1(2 1) ( ) [ 2 ](ln ln )

0

0 0

ln { ln [ 1 ]ln } (1 ) ln 1

[(1 )(ln ) ln ln ] [(1 ) ln ln ] 

j k j kz z
j j

j j

p c e

Y z A u

θ
θλ φ λ η λ τ τθ θ η θ τ θ

θ φ θ α θ θ

−− − + + ( −1) − = + + ( − ) − − + 
+ − + − − + − −

 (13) 

There are four terms that determines the log housing price. The first two terms are associated with 

the land use regulation through the cost of land. The first term summarizes the production channel that 

show that a higher local housing price reflects higher marginal cost of land due to tighter land use 

regulation. The second term shows the general equilibrium effect of the housing markets. Regulatory 

change may induce households to make new location choices. Leading to reallocation of housing 

demand and price adjustment of multiple cities. The first two terms indicate two opposite forces of 

regulation intensity on the housing price. If we apply first-order Taylor approximation to the second 

term,  

 
1(2 1) ( ) [ 2 ](ln ln )

1
2

(1 ) ln 1

{(1 )(2 1) ( ) [ (1 ) 2 ](ln ln )} (1 ) ln 2

j k j kz z

j k j k

e

z z

θ
θλ φ λ η λ τ τθ

θ λ φ θλ η θ λ τ τ θ

−− − + + ( −1) − − + 
≈ − − − + + − ( −1) − + −

 (14) 

Combining the first and the second terms, we find that the effect of regulation intensity through 

the production channel is dominant, leading to a positive relationship between regulation intensity and 

housing price in aggregate.  

The third term, (1-θ)(lnY0+ϕzj)–ln(A0)–ln(uj), summarizes the expected household income, the 

productivity of housing production, and the local user cost. Higher income will increase housing demand 

and increase the housing price in city j, while higher productivity will increase the housing supply and 

decrease the housing price. Given the rent in city j, higher user cost implies a lower housing price.  

For the first part of the last term, (1-θ)ln(α), determines the marginal rate of substitution between 

housing and non-durable consumption. A higher marginal value from housing increases demand, and 

thus the housing price. The last term, θln(θ), characterizes the production technology. When θ is smaller, 

the retained profit of the housing developer will be higher, which is consistent with a higher equilibrium 

housing price.  

Besides using the Taylor approximation in (14) to simplify the log housing price equation (13), 

we make a normalization assumption on city k which is the outside moving option of city j. We 

normalize τk = 1, indicating constant regulation intensity of outside moving option for any city.14 To be 

                                                        
14 As is shown in (13), the normalized value will only affect the level of log housing price.  
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consistent, we do the same normalization when we measure regulation intensity in the data. For the city 

income of the outside moving option, we assume it is the mean income of all cities.  

 1
k ln l S

z z
∈

= ∑   (15) 

Because zk is constant for each cross-section, it plays a role similar to the year fixed effect in the log 

housing price equation. Together with (13), we can use the Taylor approximation and the normalization 

to determine the housing price differential across cities. For two cities j and j’,    

 
31

' '2 2

3
' '2

ln ln [ (1 ) 1 ( )](ln ln )

(1 )( ) ( ) (ln ln )
j j j j

j j j j

p p

z z u u

θ λ η θ λ τ τ

θ λ φ

− ≈ − + ( − ) − −

+ − − − − −
  (16) 

 The cross-city price differential consists of three terms. The first term indicates that the regulation 

intensity differential between cities j and j’ and has a positive impact on the cross-city housing price 

differential. The second term emphasizes a positive correlation between city income differential and 

cross-city housing price differential. The general equilibrium effect mitigates the first and the second 

term by a fraction λ. The last term captures the differential of user costs across cities and has a negative 

impact on the housing price differential.  

 

4. Data  

We use multiple sources of data. The land use regulation data are derived from the Wharton residential 

land use regulation survey. The housing data come from the Zillow Transaction and Assessment Dataset. 

The regional data is based on the dataset compiled by Moody Analytics and American Community 

Survey.  

 

4.1 Land Use Regulation Data 

To measure the land use regulation intensity in the data, we rely on the sub-indices underlying the 

Wharton Residential Land Use Regulation Index (WRLURI) compiled by Gyourko, Saiz and Summers 

(2008). 15  WRLURI is a cross-sectional survey and is estimated at the jurisdiction levels (cities 

hereafter). We focus on the cities in California state that are covered by WRLURI, because the quality 

of land use regulation data and the housing data in California is better than that in other states.16 

Moreover, jurisdictions in California enjoy remarkable autonomy of land use regulation, creating 

                                                        
15 Data on WRLURI is available online (http://real.wharton.upenn.edu/~gyourko/landusesurvey.html).  
16 The number of cities covered by the land use regulation survey in California is the second highest among all states, 
only 2 cities fewer than Pennsylvania. The housing data discussed below has more comprehensive coverage and longer 
time length in California than in other states.  

http://real.wharton.upenn.edu/%7Egyourko/landusesurvey.html
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geographical variations of policies (Fischel and Fischel, 1995). Throughout our analysis, we assume 

that the land use regulation is constant over time.17 

There are 185 cities in California that responded to the Wharton Land Use Survey. While WRLURI 

covers only a limited number of jurisdictions (Turner, Haughwout and Van Der Klaauw, 2014), the 

survey data covers 43 out of 103 principal cities marked by the Census Bureau, including the top 6 cities 

with the highest population in California (Los Angeles, San Diego, San Jose, San Francisco, Long Beach 

and Fresno). 18  The survey topics range from zoning and project approval to supply and density 

restriction that are aggregated into 11 sub-indices as the bases of WRLURI. Not all sub-indices are city-

dependent with a state. We thus use only 8 sub-indices that vary across jurisdictions to construct a 

unidimensional measure of regulation intensity, including the local political pressure index (LPPI), local 

zoning approval index (LZAI), local project approval index (LPAI), density restriction index (DRI), 

open space index (OSI), exactions index (EI), supply restriction index (SRI), approval delay index 

(ADI).19  

Similar to Gyourko et al (2008), we apply the principal factor analysis to the 8 sub-indices above 

and define the predicted score of the first factor as the measure of land use regulation intensity. We use 

the regression method to derive the score. We normalize the score to zero mean and unit variance and 

define the standardized value as the California Land Use Regulation Index (CALURI). The model 

counterparts are ln(τj) for CALURI and ln(τj
s) for the sub-index s.  

In Figure 1, we show the spatial distribution of regulation intensity in California across 185 cities. 

Noticeably, several cities within Los Angeles-Long Beach-Anaheim Metropolitan Statistical Area are 

highly ranked in terms of regulation intensity. In Figure 2, we show the kernel density of CALURI. 

Compared with the standard normal density, the distribution of CALURI is more concentrated near the 

mean. CALURI has a fat right tail, indicating a non-trivial number of highly land use regulated cities. 

In the appendix, we list the estimated CALURI by MSA and city. In Figure 3, we compare CALURI 

with WRLURI. We show that CALURI is highly positively correlated with WRLURI and the simple 

sum of the 8 sub-indices underlying CALURI, so the method of constructing the index is not driving 

the unidimensional measure of regulation intensity.   

 

                                                        
17 We recognize how stringent the assumption of constant regulation intensity is but given the cross-sectional nature of 
the Wharton Land Use Survey and the slow-moving nature of the land use regulation reform, we believe our results will 
not be driven by the assumption.  
18 The principal cities within metropolitan and micropolitan statistical areas uses the 2006 US Census definition to align 
with the survey year. The ranking of the city population in California comes from US Census. For the number of principal 
cities covered by each metro area, see the appendix Table A2. 
19 The three sub-indices for dropout are the state political involvement index (SPII), the state court involvement index 
(SCII), and local assembly index (LAI) that is available only in New England. For the definitions of the sub-indices, see 
Gyourko et al (2008).  
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4.2 Housing Data 

For the housing data, we rely on the Zillow Transaction and Assessment Dataset (ZTRAX).20 The entire 

ZTRAX dataset contains more than 370 million public records from across the US and includes 

information on deed transfers, mortgages, property characteristics, and geographic information for 

residential and commercial properties (Graham, 2018).  

Particularly, we are interested in the transaction prices in the deed transfers and the housing 

characteristics in the property assessment in California. We restrict the data to observations with non-

foreclosed sales of residential properties that have detailed documentation of housing characteristics. 

We use the following housing characteristics: the transaction date, the property use, the number of 

bedrooms, the number of bathrooms, the age of the property, the property size and the distance to the 

nearest core cities. We encode the age of the property, the property size and the distance to the nearest 

core cities that are not directly observable in ZTRAX. The age of the property is calculated as the 

difference of the transaction year and the built year. There are multiple fields measuring different aspects 

of the size of a property, so we define the maximum value in those fields as the property size. For 

properties located in a city in a Core-Based Statistical Area (CBSA), we calculate the great-circle 

distance in miles to the center of the leading principal city listed in the name of a CBSA. If there are 

multiple leading principal cities in the CBSA title, we use the distance to the center of the nearest leading 

principal cities. Other housing characteristics are available in ZTRAX, but they are either optionally 

reported or sparsely populated. The details of data filtering and construction of variables are documented 

in the appendix. We use the city name of a sales transaction as the key to match ZTRAX to the land use 

data. 184 out of 185 cities responded to the Wharton Land Use Survey have at least one transaction 

record in ZTRAX (with Crescent City as the only exception).  

 

4.3 Regional data 

We calculate gross domestic products (GDP) per capita based on the city income data comes from 

Moody’s Analytics. Moody Analytics compile GDP of 402 US metropolitan statistical areas or 

metropolitan divisions from Current Employment Statistics, Bureau of Economic Analysis and County 

Business Patterns, and collect data on the metropolitan population from US Census Bureau. Both the 

GDP and the population are annual basis. Ideally, we would use city-level income and population, but 

we use the MSA-level data instead city-level data are not available in general or long enough. 21 

Although land use regulation is local, growth is regional (Glickfeld and Levine, 1992; Quigley and 

                                                        
20 More information on accessing the data can be found at http://www.zillow.com/ztrax. ZTRAX database is provided 
by the Zillow Group. The results and opinions are those of the author(s) and do not reflect the position of Zillow Group 
or any of its affiliates. 
21 Moody’s data at the MSA level traces back to 1990 and allow us to use observations from all sample years in ZTRAX 
Also those metropolitan statistical areas, by definition, are socioeconomically tied to the principal cities by commuting. 

http://www.zillow.com/ztrax
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Rosenthal, 2005; Quigley and Swoboda, 2007). Assuming the city income component of a household 

to be constant within an MSA sounds reasonable, while we still allow for city-specific characteristics to 

determine the location choice of households.22 Moody Analytics only covers the city income and the 

population in the metropolitan statistical areas instead of micropolitan statistical areas. 179 out of 185 

cities responded to the Wharton Land Use Survey are matched to an MSA in Moody’s data.23  

To account for possible endogenous concerns of GDP per capita, we additionally collect other 

regional data as instrumental variables. The lag term of the log GDP per capita is a natural instrumental 

variable. In addition, we have 3 candidate instrumental variables on MSA demographics: the share of 

high education including college and graduate education for at least 1 year, the age of the population, 

and the share of high-tech jobs. Data on the share of high education and the average age of the population 

come from the American Community Survey (ACS) Micro data from IPUMS USA. Because ACS data 

starts from 2000, we fit the time trend and extrapolate the data for each MSA before 2000. Data on the 

share of high-tech jobs from 1990 to 2017 is compiled by Moody’s Analytics, based on Bureau of Labor 

Statistics and Bureau of Economic Analysis.24  

 

4.4 Macroeconomic data 

In addition, we control for variables related to macroeconomic conditions. The data covers the period 

that witnesses the strong boom and bust in residential mortgage and housing prices from 2001 to 2007 

in California (Choi, Hong, Kubik, and Thompson, 2016). The time series variation of housing prices 

may heavily depend on lending conditions. We take this concern into account by introducing two macro 

variables: the growth rate of household mortgages in the US and the US 30-year average fixed-rate 

mortgage rate. Higher growth rate of mortgage lending is expected to increase housing demand by 

easing household borrowing, while a lower mortgage rate achieves the same effect by making borrowing 

cheaper. The macro variables serve to improve the goodness of fit along the time dimension.  

                                                        
22 Note that using MSA-level income from the data to proxy the regional component zj in the model doesn’t mean that 
city-specific feature is not important in households’ decisions. The data counterpart of a city j is mapped to a city or a 
town in the data. In the model, the utility of a household depends on city-specific utility flow and house prices.  
23 6 cities we drop in the analysis fall into 6 micropolitan statistical areas. They are: Fortuna city in Eureka-Arcata-
Fortuna, μMSA; Lakeport City in Clearlake, μMSA; Susanville City in Susanville, μMSA; Ukiah City in Ukiah, μMSA; 
Corning City in Red Bluff, μMSA; Crescent City in Crescent City, μMSA.  
24  High-tech jobs are defined from the following NAICS industries (NAICS code): Pharmaceutical and Medicine 
Manufacturing (3254), Computer and Peripheral Equipment Manufacturing (3341), Communications Equipment 
Manufacturing (3342), Semiconductor and Other Electronic Component Manufacturing (3344), Navigational, Measuring, 
Electromedical, and Control Instruments Manufacturing (3345), Medical Equipment and Supplies Manufacturing (3391), 
Software Publishers (5112), Wired Telecommunications Carriers (5171), Wireless Telecommunications Carriers (except 
Satellite) (5172), Satellite Telecommunications (5174), Other Telecommunications (5179), Other Information Services 
(5191), Data Processing, Hosting, and Related Services (5182), Computer Systems Design and Related Services (5415), 
Scientific Research and Development Services (5417), Other Professional, Scientific, and Technical Services (5419), 
Medical and Diagnostic Laboratories (6215) 
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In Figure 4, we show the time paths of the macro variables. We collect the data on the US household 

mortgage debt from Z.1 Financial Account Table from the Board of Governor of Federal Reserves and 

calculate the annual growth rate. The data on US 30-Year average fixed-rate mortgage rate comes from 

Primary Mortgage Market Survey by Freddie Mac.  

 

4.5 Summary Statistics 

In Table 1, we show the geographical coverage of our matched land use sample of property 

transactions in 179 cities. Property sales in 963 cities are not matched to a city in the land use regulation 

data, but our matched sample covers 5.3 million residential transactions in 39 out of 58 California 

counties and 25 out of 26 metropolitan statistical areas in California from 1993 to 2017 in ZTRAX.  

 In Table 2, we report the summary statistics of CALURI, together with the 8 underlying sub-indices 

and WRLURI originally estimated by Gyourko, Saiz and Summers (2008). The city-level regulation 

indices are weighted by the number of property transactions in the cities. CALURI has a positive mean 

0.27, a median -0.01, and a standard deviation 1.23. Because CALURI is normalized to zero mean and 

unit variance, the weighted statistics are consequences of the property transactions concentrated in more 

regulated and more populated cities in our sample.  

In Table 3, we show the distribution of residential property uses. 76% of the property transactions 

are single-family residential, followed by 21% of condominium transactions. Compared with the 

distribution of the unmatched sample, we have a lower share of single-family units and a higher share 

of condominiums in the land use sample (84% and 13% in the unmatched sample respectively).  

In Table 4, we report the summary statistics of the housing characteristics we control in the 

empirical analysis. The sales prices have been inflation adjusted to 2006. The average sales price is 

$370,000 dollars. The average size of a residential property is 1,700 square feet. We also show the sales 

price per square foot mean and median as $221 and $181. The average age of a residential property is 

30 years. There are 2 bathrooms and 3 bedrooms on average in a residential property. The mean and the 

median distance of a property to the nearest core city in a metropolitan statistical area is 28 miles and 8 

miles, respectively.25  

In Table 5, we show summary statistics of the instrumental variables. The average share of high 

education is 36% in an MSA, while 6.84% of the total employment are high-tech jobs. The average age 

of an individual is 35 years ago. In Table 6, we report the correlation of the real GDP per capita with its 

lag term and 3 demographic instrumental variables, 0.99, while its correlation with the share of the share 

of high education, the population age, and the share of high-tech job 0.823, 0.753 and 0.651, respectively.  

                                                        
25 Compared with the unmatched sample, the average property in the land use sample is more expensive in terms of the 
sales price per square foot and is smaller in size. It has slightly older age and a shorter distance to the nearest core cities. 
The number of bath rooms and bedrooms are close in the matched and unmatched samples. 
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5. Structural Estimation and Results 

5.1 Estimation Method 

We apply a first-order Taylor approximation to the equilibrium condition of housing price (13) and 

express it in a linear form for estimation.  
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 The log real housing price as the dependent variable has 4 subscripts that uniquely identify an 

observation of property transaction: property i, city j, MSA m, and year t. β0 is the constant term. zmt is 

the log real GDP per capita of MSA m where property i is located. z0t is the log of population-weighted 

mean GDP per capita of California, with gmt to be the population share of MSA m in year t. To take into 

account the structural characteristics of residential properties, we control a vector of housing 

characteristics Xijmt.26 To control for the time-varying macro conditions, we use a set of macro variables 

Mt, with the vector of the corresponding coefficients stored in υ.  

The number of parameters is more than that of the moment conditions. We need one more condition 

to achieve the just identification of the model. We thus exogenously estimate a relationship between η 

and ϕ, using the correlation of regulation and the log per capita income. We log-linearize the identity of 

the amenity demand in (1) and transform it into the following auxiliary regression. 

 lnm j m jmz cons controls residualsη τ
φ

= − + + +
−1

  (18) 

where amenity is treated as the residuals.27  

                                                        
26 The housing characteristics include the property use, the number of bedrooms, the number of bathrooms, the property 
age, the log property size, and the log miles to the nearest core cities. We recode the property use into three main categories: 
single-family residential, condominium and others. The number of bedrooms and the number bathrooms are recoded into 
5 levels (0, 1, 2, 3, 4+), while the age of property is divided into 8 levels (0, 1-5, 6-10, 11-20, 21-30, 31-40, 41-50, > 50). 
Recoding the numbers and the age into the discrete bins allows us to control the non-linear effects on the housing price. 
27 In the auxiliary regression, we use the MSA-level data from year 2006. The regulation intensity is aggregated to the 
MSA level using the probability weight from Gyourko, Saiz and Summers (2008). We add demographic variables as 
controls. The demographic controls include the tech-job share, the mean age of MSA, the college share, the minority 
share, the net migration, the employment, the index of cost of doing business and the population. We show the definition 
of the controls, the model specification and the result of the auxiliary regression in the appendix. We use logarithmic 
transformations to the property size and the distance to the core cities. The details of the auxiliary model are reported in 
the appendix. We find the estimated coefficient of ln(τj) to be -0.0033, leading to an additional condition for the main 
estimation: η= 0.0033(ϕ-1). For robustness, we also use the city-level income data aggregated from the tract-level income 
in 2009-2014 5-year ACS. We find the estimated coefficient is 10 times bigger but statistically insignificant and still 
economically small. Our estimations won’t qualitatively change, when we use the condition with the alternative estimate.  
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Besides the coefficients of housing characteristics and macro variables, we need to estimate 3 

structural parameters (θ, λ, ϕ) using 3 instruments (CALURIj, zmt, z0t). It is more convenient here to treat 

λ instead of α as a primitive parameter. Our estimation strategy is to use Generalized Method of 

Moments (GMM) to estimate the structural parameters (Hansen, 1982). GMM won’t improve the 

estimation of the just-identified model, but the estimation method can be naturally extended to the 

models with additional instrumental variables to deal with endogeneity of per capita income.  

 

5.2 Estimation Results 

In Table 7, we report the estimation results. The estimation of the coefficients is based on GMM or 

GMM-IV estimations. In the appendix, we report the estimation of the structural parameters (θ, λ, ϕ, α).  

 

5.2.1 GMM Estimators 

Estimations of Model 1 and Model 2 are based on the model specification without and with the vector 

of housing characteristics, respectively. When housing characteristics are controlled, Model 2 shows 

that a unit increase (a standard deviation increase) in the regulation intensity (CALURI) increases the 

housing price by 2.93%. A 1% increase in per capita income increases the local housing price by 1.326%, 

while a 1% increase in the population-weighted mean per capita income of California increases the local 

housing price by 0.352%. Model 1 underestimates the marginal effect of regulation intensity by 33%, 

The reason is that housing characteristics are correlated with the regressors in Model 1. In our data, 

regulation intensity is negatively correlated with the property size, the number of bedrooms and the 

number of bathrooms, and positively correlated with the property age.   

 One caveat at interpreting the marginal effect of regulation is that the regulatory reference point is 

the average California city, instead of the average city in the US. As we show in Table 2, the frequency-

weighted mean and median of WRLURI are 0.8 and 0.55 respectively, much higher than the weighted 

mean and median of CALURI (0.27 and -0.01 respectively). The regulation of the average California 

city is much tighter than that of the average city in the US (see Figure 3). If we mistake the regulatory 

reference point in Table 7 for the average regulation in the US and improperly extend the California 

estimates to other US cities, we are going to underestimate the national regulatory impact on housing 

prices.28  In Table A5 in the appendix, we replicate our estimations in Table 7, but instead use WALURI 

                                                        
28 There are two sources of underestimating the national level regulatory impact by using the estimates with CALURI 
and the California sample. The first source is due to the greater standard deviation of CALURI than WRLURI (1.23 vs 
0.79 respectively from Table 2). All else equal, if we scale down a regulatory index (e.g. CALURI) by multiplying a 
factor x < 1, we will equivalently scale up the regulatory impact by a factor of 1/x > 1 in estimation. The second source 
is related to the non-linear relationship between CALURI and WALURI. In Figure 3, WALURI roughly increases in 
CALURI at an increasing rate. The convex relationship indicates that specifications with WALURI will yield a higher 
estimate of the regulatory impact than those with CALURI.  
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as the regulatory measure. We show that the estimated regulatory impact with the national average as 

the reference point is 4 times larger (11.7% vs 2.93%) than the California-based regulatory impact.  

 

 

5.2.2 GMM-IV Estimators 

The city income Zj in the structural model is exogenous, but the per capita income which is its data 

counterpart can be endogenous. To deal with the endogeneity, we use the lag terms of GDP per capita 

and the population-weighted mean GDP per capita in California to instrument the contemporaneous 

variables in Model 3. In Model 4, we build on Model 3 to include 3 demographic variables (the share 

of high education, the population age, and the share of high-tech jobs) as additional instrumental 

variables. The GMM-IV estimators of the regulation intensity, the log GDP per capita and the 

population-weighted mean GDP per capita of California are not substantially different across Model 3 

and Model 4 (0.0290, 1.311 and 0.369 for Model 3; 0.0297, 1.291 and 0.432 for Model 4).29  

  By comparing Model 2 and Model 4, we see the difference between GMM and GMM-IV 

estimators. Treating per capita income as exogenous in Model 2 also underestimates the marginal effect 

of land use regulation intensity, albeit by a small amount. In Model 4, a unit increase in the regulation 

intensity increases the housing price by 2.97%, compared with 2.93% in Model 2.30  If we use the 

average US regulation as the reference point, we show in Appendix Table A5 that the regulatory impact 

on housing price is 12.4%. In Appendix, we report the structural parameter estimates of the models in 

Table 7.  

 

5.2.3 Factorial Contribution of Land Use Regulation to Housing Prices 

Our analysis relies on CALURI as a unidimensional measure of land use regulation intensity, but we 

can also quantify the marginal contribution of an underlying factor to the housing prices with one more 

step. Note that CALURI is the predicted score of the first common factor of 8 sub-indices, derived from 

the regression method of the principal factor analysis. We can recover the contribution of the sub-indices 

by regressing CALURI on the standardized sub-indices without a constant term.31 

 
 0.418* 0.351* 0.412* 0.118*

0.255* 0.151* 0.147* 0.133*

std std std std
j j j j j

std std std std
j j j j

CALURI LPPI LZAI LPAI DRI

OSI EI SRI ADI

= + + +

+ + + +
 (19) 

                                                        
29 We also test the model specifications by including one of the three, or two of the three demographic variables as 
additional instrumental variables. The estimations results are quantitatively similar. The results are available upon request.  
30 For other marginal effects, Model 2 will underestimate the mean per capita income of California on housing price and 
will overestimate the marginal impact of the log per capita income. A 1% increase in per capita income increases the 
local housing price by 1.291% in Model 4, compared with 1.326% in Model 2. A 1% increase in the population-weighted 
mean per capita income of California increases the local housing price by 0.432% in Model 4, compared with 0.352% in 
Model 2.  
31 A constant term is not needed because both CALURI and the sub-indices have been standardized to zero mean.  
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where the superscript std means that a sub-index is normalized to zero mean and unit variance. The 

relationship is exact without an error term, because CALURI, by definition, is a rescaled fitted value of 

the predicted score regression. The factor weights do not sum to one, because CALURI as the predicted 

score does not necessarily yield unit variance and we have normalized CALURI in the analysis.  

The marginal contribution of sub-indices on the housing prices is the product of the marginal effect 

of CALURI reported in Table 7 and the factor weights in the predicted score regression (19). The factor 

weights in (19) are mapped to the estimated parameters of {ρs} in (7). In Table 8, we report the 

marginal effects of the sub-indices for the model specifications in Table 7.  

Local political pressure, local project approval and local zoning approval are the leading factors 

contributing 21.06%, 20.76% and 17.68% respectively to CALURI. In aggregate, CALURI attaches 

almost 60% of weight to these three factors. In terms of the marginal effect on housing prices, a unit 

increase (1 standard deviation increase) in these three sub-indices leads to an increase in the housing 

price by 1.24%, 1.22% and 1.04% respectively. The availability of open space contributes 12.85% to 

CALURI, and a unit increase leads to an increase in the housing price by 0.76%. Exactions, supply 

restriction, approval delay and density restriction consist of the remainder of the contribution (7.61%, 

7.41%, 6.70% and 5.94%) and lead to a price increase respectively of 0.45%, 0.44%, 0.40% and 0.35%. 

 

5.3 Foundation and Estimation of the Non-Linear Effects on the Log Housing Prices 

We show that land use regulation and the log per capita income have positive impacts on the log housing 

price. Our estimations yield the average marginal effects. It is natural to ask whether the constant 

marginal effect is only local, and whether the model ignores any non-constant linear or non-linear effect 

consideration. Model 4 in Table 7 is treated as the benchmark model in this section where we address 

this question.  

We micro-found the impact of non-constant marginal effects by extending the benchmark to the 

model that (1) the cost of housing supply may vary with the amenity level; (2) the income elasticity of 

amenity demand is not a constant. These two extensions represent the supply and demand channels 

through which amenity and city income can affect the local housing prices.  

 

5.3.1 Foundation of the Interactive Effect 

We establish how our estimation equation relies on the assumption that the measured impact of 

regulation on housing production is correlated with the amenity level. Motivated by the finding in the 
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literature, we generalize the log marginal cost of housing production with the following multiplicative 

form.32 33  

 1 0 0ln ( ) ln lnj j jc z cδ δ τ= + +   (20) 

The parameters δ1 and δ0 control the sensitivity of the marginal cost. With δ0 = 1 and δ1 = 0, we go 

back to the benchmark case. When δ1 > 0 (we show it is the case), the housing supply exhibits a higher 

price impact in cities with high income and amenity demand. In estimation, we impose a parametric 

restriction to focus on the following class of the models that include the benchmark model as a special 

case. 

 1 0 0( ) 1t tE zδ δ+ =   (21) 

The relationship indicates that the term in the parenthesis in (20) is unity on average. For a property 

located in an MSA with the log per capita income equal to Et(z0t), ceteris paribus, the marginal effect of 

regulation intensity will be identical in the estimation equations with and without an interactive term. 

For computation, there are two parameters with one degree of freedom. The new estimation equation 

will be similar to (17), but with an additional interactive term of CALURI and the log per capita income.  

 

5.3.2 Foundations of the Quadratic Effect 

We extend the assumption of constant income elasticity of amenity. The extension results in the 

quadratic term of the log per capita income in estimation.34  

The power term ϕ–1 in the benchmark model has the interpretation of the income elasticity of 

amenity. The amenity adjusted household income can be written as exp(ϕz). We extend the linear form 

to the quadratic form in the power term.35  

 2 1 12
0 1 2 0exp( ) exp( ) zz z Z Z φ φφ φ φ φ + −+ + =   (22) 

where the last term on the right side is the amenity value and 2ϕ2z + ϕ1 - 1 will be the income elasticity 

of amenity demand. With ϕ0 = 0 and ϕ2 = 0, we go back to the benchmark case. When ϕ2 > 0 (we show 

it is the case), the income elasticity of amenity demand is higher for wealthier cities.  

                                                        
32 Glaeser, Gyourko and Saks (2005a) find that the likelihood to build new housing units, an inverse measure of time 
cost, is lower in wealthier communities. Homeowners in the wealthy communities may use time to influence local 
planning (Gyourko and Molloy, 2015). Fischel (2001) brings about the homevoter hypothesis that homeowners in wealthy 
communities have stronger incentive to protect local amenities capitalized in housing values.  
33 If the impact of the log amenity comes into the marginal cost in an additive form. The parameters δ1 and δ0 will remain 
unidentified in estimation.  
34 We leave out the quadratic effect of the regulation intensity in the section, because we don’t find the quantitatively 
important quadratic effect along the dimension. Moreover, the regulation intensity is an index we construct from sub-
indices. We take the stand that the index construction should pick up the high-order effects, if there is any.  
35 The extension of the amenity demand captures two things, the residual linear effect after taking out the unity linear 
impact of the per capita income, and any non-linear effect of per capita income. 
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 In the estimation, we impose two parametric restrictions to focus on the following class of models 

that include the benchmark model as a special case. 
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The value ϕavg - 1 captures the average income elasticity of amenity demand according to the first 

restriction. The second restriction indicates that when the city income is equal to Et(z0t), the elasticity of 

amenity demand is identical in the benchmark and the extended model.  

To focus on the marginal effect of regulation and per capita income on housing prices, we further 

make an assumption that a household uses the average elasticity ϕavg-1 in the location choice problem, 

which is the same as the benchmark case. The assumption allows us to focus on the quadratic term of 

the log per capita income as an additional term in the estimation equation (17).36  

 

5.3.3 Estimation of the Non-Linear Effects on the Log Housing Prices 

Our extended estimation equation with the interactive and quadratic effects takes the following form.  
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We report the estimation of four model specifications in Table 9 and the parameter estimates in the 

appendix. Model 4 is the benchmark case (δ0 = 1 and δ1 = 0; ϕ0 = 0 and ϕ2 = 0). Model 5 builds on 

Model 4 with the interactive effect (ϕ0 = 0 and ϕ2 = 0), while Model 6 builds on Model 4 with the 

quadratic effect (δ0 = 1 and δ1 = 0). Model 7 incorporates both effects in the benchmark model.  

 In Model 5, we find the interactive term has a positive coefficient, so the marginal effect of 

regulation on the log housing prices is not constant. For an average property in year 2006 located in an 

MSA whose log per capita income is one standard deviation above (below) the mean, a unit increase in 

the regulation leads to 3.47% (2.57%) increase in the housing price in Model 5, compared with a uniform 

2.97% increase in Model 4. The significant impact of the interactive term supports the hypothesis that 

there is a direct and positive impact of the city income on the marginal cost of housing production.  

The way we model the interactive effect by allowing the cost to housing production to vary with 

amenity and city income provides one explanation for the positive interactive effect, but there are 

alternative explanations. Wealthier and bigger cities may have more complex sets of the growth control 

policies that cannot be fully incorporated in the survey with limited dimensions. If the omitted growth 

control policies are positively correlated with our regulatory measure and the omitted variable bias is 

                                                        
36 What the approximation assumption leaves out is the interactive effect of the GDP per capita and the mean GDP per 
capita of California, and the quadratic effect of the latter term.  
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more severe in the wealthier and bigger cities, then we will see a larger upward bias of the regulatory 

effect for the wealthier and bigger cities.   

 In Model 6, we find the quadratic effect of the log per capita income is positive; the marginal effect 

of the log per capita income has a positive and increasing impact on the log housing prices. For an 

average property in year 2006 located in an MSA whose log per capita income is one standard deviation 

above (below) the mean, 1% increase in the per capita income leads to 1.99% (1.17%) increase in the 

housing price in Model 6, compared with a uniform 1.29% increase in Model 4. The significant impact 

of the quadratic term supports the hypothesis that the income elasticity of amenity demand is not 

constant but positively correlated with the income.  

 Model 7 reports the coefficients with the interactive and quadratic effects that are both significant. 

The marginal effect of land use regulation is thus corrected for the quadratic effect of the log per capita 

income. For an average property in year 2006 located in an MSA whose log per capita income is one 

standard deviation above (below) the mean, a unit increase in the regulation intensity leads to 5.08% 

(1.98%) increase in the housing price in Model 7, compared with a uniform 2.97% increase in Model 4. 

With the quadratic effect considered, the marginal effect of land use regulation is found more disperse 

geographically in Model 7 than in Model 5.  

 In Figure 5(a), we visualize the relationship of the log housing price, CALURI and the log GDP 

per capita in the benchmark model.37 The tighter the regulation is or the higher the per capita income 

is, the higher the housing price.38 In Figure 5(b), we show the same relationship with the interactive 

and quadratic effects. There is wide dispersion of the marginal effect of land use regulation by city 

income. When we approach the corner where the land use regulation is tight and the log GDP per capita 

is high, the increasing steepness shows the importance of the non-linear effect.  

We use the top 6 most populated MSAs in California as an example to show the price dynamics.39 

The leading principal cities of these MSAs are Los Angeles, San Francisco, Riverside, San Diego, San 

Jose and Fresno. Figure 6 compares the dynamics of the actual price and the estimated price based on 

                                                        
37 We simulate the grid points of CALURI and the log GDP per capita that are normal distributed with the mean and the 
standard deviation estimated from the data. The grid of each dimension is truncated at 1.64σ above and below the variable 
mean, so the grid points fall into the 90% confidence intervals along each dimension. We thus look at the space where a 
majority of the grid points lie. 
38  To construct Figure 5(a), we evaluate the parameters of CALURI and the log GDP per capita at the parameters 
estimated from the linearized Model 4 in the exact model solution (13). We find that the surface in Figure 5(a) is very 
close to a hyperplane, indicating that the estimation equation (17) based on the first-order Taylor approximation is precise 
enough to capture the marginal impact of land use regulation and the per capita income on the housing prices in the 
benchmark model.  
39 The population ranking is based on the Moody’s data in 2006. We exclude Sacramento--Roseville--Arden-Arcade 
MSA, because the land use data from Gyourko, Saiz and Summers (2008) is not available from the leading principal city 
(Sacramento). As a result, our choice of the top 6 most populated MSAs are Los Angeles-Long Beach-Anaheim MSA, 
San Francisco-Oakland-Hayward MSA, Riverside-San Bernardino-Ontario MSA, San Diego-Carlsbad MSA, San Jose-
Sunnyvale-Santa Clara MSA, Fresno MSA.  
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the structural estimates from Model 7. The subplots are sorted by the MSA population in 2006 in 

descending order. The estimated prices from our empirical model trace the actual prices closely.40 

 

6. Decomposing the Regulatory Effects: Production and Amenity Channels  

6.1 Measuring Production and Amenity Channels 

The effect of land use regulation on housing prices can be decomposed into three channels. The first 

channel goes through the housing supply. We call this the production channel. The second channel goes 

through the housing demand. We call it the amenity channel, because the regulation protects the amenity 

value and increases housing demand, leading to an increase in the local housing prices. There is a third 

channel related to the household location choice; this is the general equilibrium (GE) channel associated 

with the feedback effect of housing prices on housing choice. Tighter regulation that makes housing 

more expensive will drive housing demand to neighboring cities.  

We disentangle these three channels using our structural estimates. We decompose the responses 

of housing prices through these different channels to a land use regulatory change. We can rewrite the 

estimation equation (24) by separating the impacts of regulation as follows. 
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where prod, amen and ge stand for the production, the amenity and the GE channels respectively.41 We 

define three channels in this way, because they achieve the normalization with zero mean; if the land 

use regulatory measure and the per capita income is evaluated at their means (CALURIj = CALURIk = 

0), prod, amen and ge will yield zero values.  

The GE channel is closely related to the spillover effect in Pollakowski and Wachter (1990) which 

emphasizes the interdependence of land use regulation and housing prices across regions. Our structural 

model picks up the effect as part of the GE channel. Pollakowski and Wachter (1990) and our model 

predict that tighter land use regulation in the neighboring regions increases local housing prices, as 

                                                        
40 The housing boom and bust in the 2000s in the Los Angeles, San Francisco and San Jose MSAs are very well captured 
by our structural model. Note that the estimated prices of Fresno MSA are not as good as those in other MSAs. Our 
estimated price dynamics in Fresno MSA capture the shape along the time dimension, but not the level. We think the 
main reason is that our GMM-IV structural estimates based on cross-sectional time-series data are not indexed by MSA 
and year, so more weights will be assigned to bigger MSAs including Los Angeles and San Francisco MSAs.  
41 Note that ge is not identical to the Taylor approximated term (14); only the effect related to CALURI in (14) is 
included in the empirical measure of the GE channel. 
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regulation intensity of neighboring cities CALURIk is positively correlated with the GE channel and 

housing prices.  

The production and the amenity channels do not include the second-order effects due to the price 

feedback, but separately identifies them in the GE effect. We thus conduct another decomposition that 

adds back the price feedback effects to construct the net production and the net amenity channels.  
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In Figure 7, we provide a graphical illustration of the housing price responses to the regulation 

increase through the (net) production and amenity channels. The housing supply curve will shift to the 

left through the production channel, while the housing demand curve will shift to the right through the 

amenity channel. The response through the net production (amenity) channel is the price response 

through the production (amenity) channel net of the GE effect.  

 

6.2 Responses of Production and Amenity Channels to Land Use Regulation 

Table 10 reports the responses of housing prices through each channel in response to one unit increase 

in land use regulation. We construct the counterfactual prices that only one channel in (25) or (26) 

responds to the regulatory change. The response is measured by the percentage deviation of the 

counterfactual price from the estimated price. We report the result by MSA, because our measure of the 

per capita income only varies at the MSA level.42  

 From Columns 1-3 in Table 10, the response of housing prices through the production channel is 

in general larger than the responses through the amenity or the GE channel. Tight regulation has the 

first-order effect to increase housing prices directly through the housing supply (3.22% on average). In 

comparison, the response through the GE channel is much smaller (-1.73%), because the effect comes 

from the demand feedback of housing prices. The response through the amenity channel has in general 

the smallest impact on housing prices (0.32%). If the production and the amenity channels take the GE 

effects into account, we see in Columns 4-5 in Table 10 that both effects become smaller.  

 The total response of housing prices to a unit increase in CALURI combines the responses of all 

channels. San Francisco area (4.84%), San Jose area (4.84%), Los Angeles area (3.82%) and San Diego 

area (3.53%) show the largest response of housing prices to a unit increase of regulation. These 4 MSAs 

have higher per capita income than the average MSA in California. The strong response of the housing 

prices in these MSAs is mainly attributed to the production channel. In these 4 MSAs, the responses 

                                                        
42 We aggregate the city regulatory measure to the MSA level using the probability weight provided by Gyourko, Saiz 
and Summers (2008) as before. 
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through the net production channel are more than 50% larger than the MSA average response through 

the net production channel (1.55%). The price will increase through the net production channel by 4.58% 

in San Francisco, 4.57% in San Jose, 3.55% in Los Angeles, and 3.26% in San Diego. Our estimated 

response of the net amenity channel is constant by construction across MSAs. A unit increase in 

CALURI lead to 0.27% increase through the net amenity channel.   

We can also use these results to simulate the impact of changes in regulatory regimes. Our 

regulatory index at the city level ranges from to -3.23 to 3.38. Los Angeles City scores the highest, while 

Hillsborough town scores the lowest in terms of CALURI in our sample. Using these measures to set 

up a counterfactual: If Los Angeles City were to relax its land use regulation to the lowest level among 

cities, ceteris paribus, housing prices could be as much as 25% lower. The production, the amenity and 

the GE channels contribute to -34.60%, -2.12% and 11.44% respectively.43 44 

 Our estimated effects in San Francisco MSA are comparable to the estimated marginal effects in 

Quigley, Raphael and Rosenthal (2008) (QRR), because both works have a single standardized 

regulatory index and the questionnaire are similar. More importantly, the local survey conducted by 

QRR is based on the questionnaires of Qyourko, Saiz and Summers (2008) but is adapted to California 

jurisdictions. Table 11 shows the comparison of QRR’s analysis in several aspects to ours.45 QRR’s 

OLS estimates of the marginal effect of regulation on housing prices range from 1.2% to 2.2% and their 

IV estimates range from 3.8% to 5.3%. Our GMM-IV estimators are close to QRR’s IV estimators. The 

marginal effect through the production, the amenity, and GE channels are 6.25%, 0.32% and -1.73% 

respectively. If the we factor the GE effects into the first two channels, we find 4.58% and 0.27% for 

the production and amenity channels. We find that the total marginal effect of regulation on prices in 

San Francisco MSA is 4.84%.   

 

7. The Spillover Effect of Land Use Regulation on Housing Prices 

Pollakowski and Wachter (1990) using a database for a single county, Montgomery, Maryland find that 

the relative restrictiveness of regulation between neighboring and home cities has a positive spillover 

effect on the housing prices in the home city. Our dataset is larger. We use a more granular sample from 

California to confirm the existence and the positive impact of the city-level spillover effects. We find 

                                                        
43 For the net channels incorporated with GE effects, the contributions to the price decrease are -23.48% and -1.79% for 
the net production and amenity effects. 
44 To calculate these price change through different channels, we use the estimated responses of Los Angeles MSA in 
Table 10. We multiply the responses by the size of regulatory change, 3.38 - (-3.23), to estimate the decline of housing 
prices attributed to different channels.  
45 QRR focus on the pricing data from the cross-section data of 2000 Census from 86 cities in San Francisco Bay area, 
while we have transaction cross-section time-series data from 25 cities in San Francisco MSA from 1997 to 2017. There 
are 10 sub-indices underlying the single index in QRR, compared to 8 sub-indices behind CALURI in our work.  
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that the home regulatory impact on home housing prices is stronger, once the neighboring regulatory 

impact is controlled. Consistent with Pollakowski and Wachter (1990), we show the previous finding 

holds in more recent data and more widely in the metro areas. 

 

7.1 Measuring the Spillover Effect 

While the spillover effect establishes the price interdependence of neighboring housing markets through 

regulation, it is different from the home regulatory effect through the general equilibrium channel in the 

previous analysis. The latter captures the second-order price feedback effect through the production or 

the amenity channels due to the spatial reallocation of housing demand. The spillover effect may capture 

any direct regulatory impact from the neighboring cities, in addition to the price feedback channel.  

 We define the relative restrictiveness index (RRI) as the difference between neighboring and home 

regulatory indices whose marginal effect measures the spillover effect in the section.   

 j j jRRI CALURI CALURI−= −   (27) 

We specify the functional form of the neighboring regulatory index of city j as the weighted average 

of the regulatory indices in California and consider 2 weighting measures of the neighboring indices 

that weigh on the city proximities.  
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where xinvdist2, and xgravity are constants to make sure that the sum of the weights is equal to 1.46 The 

second case generalizes the first one and takes a gravitational form. The gravity model puts weight on 

the per capita income of the home and neighboring cities, adjusted by the distance.  

 

7.2 Additional Data 

Our estimations in the previous sections exclude the discussion of the spillover effect due to limited data 

availability.47 As the spillover effect is local among the neighboring cities that are geographically close, 

                                                        
46 Alternatively, we also test the inverse distance to weigh the neighboring indices. Compared with the case of inverse 
squared distance, the alternative case puts less weight on the neighboring cities closer to the home city.  
47 We make the decision to use more data to produce more precise estimates and to exclude the spillover effect in the 
estimations in the previous sections where the per capita income varies only at the metro level. The choice may raise the 
concern of downward bias of the home regulatory impact. As will be shown in this section, we find a negative correlation 
between the regulatory index and the relative restrictiveness index. However, we find the issue is minor in the previous 
estimates for the following reason.  

The decomposition of the regulatory effects in (25) shows that the negation of the GE channel takes a form similar 
to our definition of the spillover effect, so previous estimates do partially take into account the effect of relative 
restrictiveness index. The difference is that the neighboring regulatory index CALURIk is not varying by city but 
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one needs to control city-level variation of the per capita income to identify the spillover effect in the 

metro areas. There is no series of per capita income that covers the whole sample period from 1993 to 

2017 at such granular level. An additional data issue is the low response rate of the Wharton Land Use 

Survey in some MSAs. Among the most populated MSAs, only San Diego-Carlsbad MSA has a 

response rate of jurisdictions that exceeds 50% (11 out of 18 cities).48 The construction of RRI which 

relies on geo-spatial information may be severely biased towards the cities responding to the Survey.  

 To overcome the data issue, we additionally collect census tract data from the tract-block Summary 

File of the 2014 American Community Survey (ACS) 5-year estimates. The 5-year survey spans from 

2010 to 2014 but the estimates do not represent any single year in the range.49 We calculate the city-

level per capita income by averaging the tract-level median income per capita and using the tract 

population as the weight.  

To match the time frame of the income data, the empirical analysis in the section will use the 

property transactions in California in 2014. We thus exclude the variables that don’t exhibit cross-

sectional variations to prevent collinearity problem.50 The independent variables include the first and 

second order terms of the log per capita income and structural characteristics of housing in the 

benchmark estimation (Model 4 in Table 7). We select four major MSAs that are the least likely to suffer 

the data issue of low response rates in the Survey and have not too small numbers of cities within the 

metro area (Los Angeles-Long Beach-Anaheim MSA, San Francisco-Oakland-Hayward MSA, San 

Diego-Carlsbad MSA, Oxnard-Thousand Oaks-Ventura MSA, with LA, SF, SD and VT respectively for 

short notations).51  

 In Figure 8, we show the distribution of the CALURI and RRI. RRI under different weight 

measures in (29) show similar distributional patterns, with the bell shapes and the two-sided fat tails. 

In Figure 9, we show the scatter diagrams of CALURI and RRI by city. There is a strong negative 

                                                        
normalized to 0 for all cities. Because the mean of CALURI is zero by construction, the assumption of zero neighboring 
regulatory index is thus a special case where equal weight is assigned to all cities, regardless of the distance. The 
assumption turns out to make the regulatory estimates more robust for MSAs with low survey response rates.  
48 In the appendix, we report the response rate of cities by CBSA (MSA and μMSA) in the Wharton Land Use Survey.  
49 The first wave of the tract level data is 2009 ACS 5-year estimates, but we use the wave of 2014 ACS 5-year estimates 
to exclude any unobservable consequence of the Great Recession on the housing market. 2014 ACS 5-year estimates is 
the wave that is closest to the time of the Wharton Land Use Survey with no single year falling into the Great Recession.  
50 The excluded independent variables in the section are the growth rate of the household mortgage debt, the real 30-year 
fixed-rate mortgage rate, and the log of population-weighted mean GDP per capita of California.  
51 To choose MSAs, we set the following criteria: (1) there are at least 10 cities in an MSA covered by the Wharton Land 
Use Survey; (2) an MSA has more than 1 principal city based on the definition in the historical delineation files of 
metropolitan and micropolitan statistical areas (2006) from the Census Bureau; (3) more than 50% of the leading 
principal cities (listed in the name of an MSA) are covered by the Survey. Three MSAs survive the criteria: Los Angeles-
Long Beach-Anaheim MSA, San Francisco-Oakland-Hayward MSA, and San Diego-Carlsbad MSA (For San Francisco 
MSA, it is long known as San Francisco–Oakland–Fremont MSA until 2013). We additionally add Oxnard-Thousand 
Oaks-Ventura MSA as another case. Based on the appendix Table A2, the share of cities and the share of principal cities 
covered by the Survey are both high among MSAs.  
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correlation between CALURI and RRI and the negative relationship is robust under different weighting 

measures (-0.92, -0.93 respectively). We separately mark the cities in the four selected MSAs (LA, SF, 

SD, VT) and show that the negative correlation still holds within each metro area.  

 

7.3 Estimation of the Spillover Effect 

In Tables 12a-d, we report the estimated home and neighboring regulatory effects for the four selected 

metro areas (Los Angeles MSA, San Francisco MSA, San Diego MSA, Oxnard MSA respectively). We 

report three model specifications in each table. Similar to the method adopted by Pollakowski and 

Wachter (1990), we use Ordinary Least Square in the estimations.52 Model 1 in Table 12 includes the 

home regulatory impact but excludes the spillover term in the estimations, while Models 2 and 3 add 

the relative restrictiveness indices under 2 different weighting measures in (29). Our cross-sectional 

estimations can explain 43%-61% of the log price variations, depending on the model specifications 

and the MSAs.   

 By estimating the regulatory impacts using the city-level per capita income, we find in Model 1 

that the marginal effect of regulation on housing prices are qualitatively similar to the estimated 

regulatory effects shown in Table 10. This specification has the interpretation of equal weights assigned 

to all cities available in the Wharton Land Use Survey, regardless of the geographical distance (see 

footnote 47).  

Models 2 and 3 build on Model 1 by considering the neighboring regulatory impact and apply the 

inverse squared distance and the gravity weight respectively as the weighting measures to the 

neighboring cities. General results hold for all models. The home and neighboring regulatory effects 

will be both significantly positive for all of the 4 selected MSAs.  

 The comparison of Model 2 to Model 1 shows that the marginal impacts of land use regulation will 

be bigger if the relative restrictiveness index is controlled in the log housing price equations. The result 

follows naturally from the fact that CALURI and RRI are negatively correlated and omitting RRI in the 

estimation in Model 1 will downward bias the estimated coefficients of CALURI. We see large spatial 

variation in the estimated regulatory and spillover impacts. In Model 2, the home and neighboring 

regulatory effects on the log housing prices (referenced to the average city in the metro area) are 14.7% 

and 8.78% in Los Angeles MSA, 6.00% and 4.10% in San Francisco MSA, 25.7% and 10.3% in San 

Diego MSA, and 6.07% and 8.05% in Oxnard MSA.  

If we build on Model 2 and further take the per capita income of the neighboring cities into account 

in Model 3, the estimated regulatory and spillover effects are both larger in all of 4 selected MSAs. In 

                                                        
52 Instrumenting the per capita income with city-level demographic variables (using the mean population age and share 
of high education aggregated from the tract level) won’t qualitatively change the estimated regulatory and spillover effect 
of the selected MSAs.  
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Model 3, the regulatory and the spillover effects on the log housing prices are 18.2% and 12.4% in Los 

Angeles MSA, 7.15% and 5.12% in San Francisco MSA, 26.2% and 10.6% in San Diego MSA, and 

6.79% and 8.79% in Oxnard MSA.  

 

8. Conclusion 

In this paper, we develop a general equilibrium framework to determine the impact of land use regulation 

on housing prices in cities in California over the years 1993 to 2017. We use housing transaction prices 

and housing characteristics along with data on macro credit supply and regional per capita income 

together with the Wharton Residential Land Use Survey (Gyourko, Saiz and Summer, 2008) to identify 

the impacts of land use regulation on housing prices.  

We identify the separate channels through which land use regulation can impact housing prices. 

Specifically, we characterize the production channel which measures the increasing cost of housing 

production and the amenity channel which measures the increase in environmental attractiveness of 

communities with greater land use regulation. While the empirical literature discusses these channels, 

the literature does not measure these effects in a general equilibrium framework. In addition, we show 

the general equilibrium effects of mitigating housing price impacts through households’ location choice 

response to higher prices. Our estimated effects show that Los Angeles is the city whose housing prices 

are most impacted by regulation. In our calculations, if land use regulation in LA were to be decreased 

to the level observed in the least regulated cities, housing prices would decline by approximately 25%. 

Besides, we take a more granular view to examine the regulatory interdependence among cities and to 

estimate the spillover effects of regulation. We define the relative restrictiveness indices as the difference 

between the neighboring and home regulatory effects and report robust finding on the significant and 

positive spillover effects on housing prices.    
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Tables 

 

Table 1. Sample Coverage by Geographical Cities 
 City County CBSA Count 
Land Use Sample 179 39 25 5,318,379 
Unmatched Sample 963 47 25 7,403,052 

 

 

Table 2: Summary Statistics of Land Use Regulation Indices 
 Mean Median Std.Dev Pct.25 Pct.75 
LPPI 0.47 0.11 1.08 -0.31 1.09 
LZAI 1.87 2 0.61 1 2 
LPAI 1.69 1 0.98 1 2 
DRI 0.15 0 0.35 0 0 
OSI 0.87 1 0.33 1 1 
EI 0.93 1 0.26 1 1 
SRI 0.19 0 0.77 0 0 
ADI 9.04 8.06 4.51 5.67 12.13 
CALURI 0.27 -0.01 1.23 -0.41 0.6 
WRLURI 0.8 0.55 0.79 0.16 1.5 
Note: local political pressure index (LPPI), local zoning approval index (LZAI), local project 
approval index (LPAI), density restriction index (DRI), open space index (OSI), exactions index 
(EI), supply restriction index (SRI), approval delay index (ADI). California Land Use Regulation 
Index (CALURI), Wharton Residential Land Use Regulation Index (WRLURI). Frequency 
weights of the property transactions are used. Source: Gyourko, Saiz and Summer (2008) and 
authors’ calculation.  

 

Table 3. Distribution of Residential Property Use 
 Land Use Sample Unmatched Sample 
Property Type Frequency Percent Frequency Percent 
Single Family Residential 4,045,001 31.80  6,200,178 48.74  
Townhouse 13,401 0.11  31,418 0.25  
Cluster Home 39,918 0.31  45,049 0.35  
Condominium 1,133,241 8.91  951,460 7.48  
Cooperative 859 0.01  323 0.00  
Row House 336 0.00  702 0.01  
Planned Unit Development 84,951 0.67  159,699 1.26  
Inferred Single Family Residential 672 0.01  14,223 0.11  
Total 5,318,379 100.00  7,403,052 100.00  
Note: the total sample is the non-foreclosed residential sales transactions in California from 1993 
to 2017. Source: ZTRAX and authors’ calculation. ZTRAX database is provided by Zillow 
Group. The results and opinions are those of the author(s) and do not reflect the position of 
Zillow Group or any of its affiliates. 
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Table 4. Summary Statistics of Property Characteristics 
 Mean Median Std.Dev Pct.25 Pct.75 
Land Use Sample     

Sales Price 369,615 282,102 620,425 169,943 453,920 
Sq.Ft. 1,699.40 1,503.00 858.78 1,162.00 2,011.00 
Price/Sq.Ft 221.27 181.26 518.6 115.82 283.93 
Age of Property 30 26 24.56 9 46 
No.of Bathroom 2 2 0.81 2 2 
No.of Bedrooms 3.03 3 1.04 2 4 
Miles to Core Cities 28.08 8.14 240.19 4.44 14.5 
Unmatched Sample     

Sales Price 352,330 270,609 643,300 165,749 427,337 
Sq.Ft. 1,778.34 1,574.00 1,048.22 1,217.00 2,128.00 
Price/Sq.Ft 199.64 164.88 761.11 108.91 250.08 
Age of Property 27.8 24 23.13 8 44 
No.of Bathroom 2.05 2 0.8 2 2 
No.of Bedrooms 3.16 3 0.95 3 4 
Miles to Core Cities 52.34 10.99 362.95 5.83 20.65 
Note: Sales Price and Price/Sq.Ft are inflation adjusted to Jan. 2006 US dollars, using the Consumer Price 
Index for All Urban Consumers: Housing (FRED: CPIHOSNS). Source: ZTRAX and authors’ calculation. 
ZTRAX database is provided by Zillow Group. The results and opinions are those of the author(s) and do 
not reflect the position of Zillow Group or any of its affiliates. 

 

Table 5. Summary Statistics of Instrumental Variables 
 Mean Median Std.Dev Pct.25 Pct.75 
share of high education (%) 35.92 35.2 8.02 29.12 42.10 
population age 34.48 34.3 2.22 32.72 36.27 
share of high-tech jobs (%) 6.84 5.37 5.90 2.94 8.11 
Note: variables are weighted by the MSA population. Source: American Community Survey, 
Moody’s Analytics.  

 

Table 6. Correlation Matrix: Instrumental Variables 
 GDP pca L.GDP pca high educ % high-tech % pop. age 
GDP pca 1.000     
L.GDP pca 0.992 1.000    
high educ % 0823 0.820 1.000   
high-tech % 0.651 0.627 0.706 1.000  
pop. age 0.753 0.762 0.905 0.405 1.000 
Note: all variables are in log form. Correlation is weighted by the MSA population. Source: 
American Community Survey, Moody’s Analytics. 
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Table 7. Benchmark Estimation: Coefficients 
 Model 1 Model 2 Model 3 Model 4 
 GMM GMM GMM-IV GMM-IV 
CALURI 0.0195*** 0.0293*** 0.0290*** 0.0297*** 
 (0.000) (0.000) (0.000) (0.000) 
log GDP per  1.231*** 1.326*** 1.311*** 1.291*** 
capita (0.001) (0.001) (0.001) (0.001) 
log Avg. 0.496*** 0.352*** 0.369*** 0.432*** 
GDP per cap (0.005) (0.004) (0.004) (0.004) 
Bedroom: 1  -0.120*** -0.120*** -0.129*** 
  (0.003) (0.003) (0.003) 
Bedroom: 2  -0.291*** -0.293*** -0.300*** 
  (0.003) (0.003) (0.003) 
Bedroom: 3  -0.389*** -0.391*** -0.405*** 
  (0.003) (0.003) (0.003) 
Bedroom: 4+  -0.453*** -0.455*** -0.471*** 
  (0.003) (0.003) (0.003) 
Bathroom: 1  0.134*** 0.135*** 0.107*** 
  (0.006) (0.006) (0.006) 
Bathroom: 2  0.209*** 0.211*** 0.169*** 
  (0.006) (0.006) (0.006) 
Bathroom: 3  0.161*** 0.165*** 0.115*** 
  (0.006) (0.006) (0.006) 
Bathroom: 4+  0.303*** 0.308*** 0.264*** 
  (0.007) (0.007) (0.007) 
log sq.feet  1.084*** 1.084*** 1.107*** 
  (0.001) (0.001) (0.001) 
log miles to  -0.0262*** -0.0261*** -0.0314*** 
core cities  (0.000) (0.000) (0.000) 
SFR  -0.0576*** -0.0595*** -0.0709*** 
  (0.001) (0.001) (0.001) 
condominium  0.0217*** 0.0219*** 0.0233*** 
  (0.001) (0.001) (0.001) 
Age: 1-5  0.132*** 0.133*** 0.115*** 
  (0.001) (0.001) (0.001) 
Age: 6-10  0.0847*** 0.0848*** 0.0695*** 
  (0.001) (0.001) (0.001) 
Age: 11-20  0.0652*** 0.0656*** 0.0530*** 
  (0.001) (0.001) (0.001) 
Age: 21-30  0.0576*** 0.0585*** 0.0413*** 
  (0.001) (0.001) (0.001) 
Age: 31-40  0.108*** 0.110*** 0.0937*** 
  (0.001) (0.001) (0.001) 
Age: 41-50  0.127*** 0.129*** 0.117*** 
  (0.001) (0.001) (0.001) 
Age: > 50  0.143*** 0.147*** 0.137*** 
  (0.001) (0.001) (0.001) 
growth rate of 3.072*** 3.025*** 3.024*** 2.881*** 
mortgage debt (0.008) (0.006) (0.006) (0.006) 
30-year FRM  -4.003*** -3.190*** -3.153*** -2.591*** 
rate (0.049) (0.040) (0.042) (0.042) 
Constant 5.806*** -1.825*** -1.830*** -2.115*** 
 (0.021) (0.021) (0.022) (0.022) 
Observations 5,259,215 5,259,215 5,259,215 5,259,215 
Note: robust standard errors in the parentheses. * p<0.10, ** p<0.05, *** p<0.010. The base levels of the factor 
variables are: no bedroom, no bathroom, property use other than single-family and condominium, new property (age 
is zero). The lag terms of log real GDP per capita and log mean GDP per capita in California are used as IVs of their 
contemporaneous terms in Models 3-4; the share of high education, the population age and the share of high-jobs are 
additional IVs of Model 4. 
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Table 8. Marginal Effect of Sub-indices on log Housing Price 
 Model 1 Model 2 Model 3 Model 4 Contribution (%) 
 GMM GMM GMM-IV GMM-IV sum to 100% 
LPPI 0.0082  0.0122  0.0121  0.0124  21.06  
LZAI 0.0068  0.0103  0.0102  0.0104  17.68  
LPAI 0.0080  0.0121  0.0119  0.0122  20.76  
DRI 0.0023  0.0035  0.0034  0.0035  5.94  
OSI 0.0050  0.0075  0.0074  0.0076  12.85  
EI 0.0029  0.0044  0.0044  0.0045  7.61  
SRI 0.0029  0.0043  0.0043  0.0044  7.41  
ADI 0.0026  0.0039  0.0039  0.0040  6.70  
Note: local political pressure index (LPPI), local zoning approval index (LZAI), local project 
approval index (LPAI), density restriction index (DRI), open space index (OSI), exactions index 
(EI), supply restriction index (SRI), approval delay index (ADI). All sub-indices have been 
standardized to zero mean and unit variance. The marginal effect of a sub-index is the marginal 
effect of CALURI on the log housing prices multiplied by the sub-index weight in the predicted 
score regression. The control variables and the estimation method can be found in Table 7. 

 

 

 

Table 9. Estimation with Non-Linear Effects: Coefficients 
 Model 4 Model 5 Model 6 Model 7 
 GMM-IV GMM-IV GMM-IV GMM-IV 
CALURI 0.0297*** -0.0577*** 0.0341*** -0.267*** 
 (0.000) (0.004) (0.000) (0.004) 
log GDP per  1.291*** 1.293*** -6.440*** -6.758*** 
capita (0.001) (0.001) (0.030) (0.031) 
Avg.log GDP per  0.432*** 0.426*** 0.356*** 0.343*** 
capita (0.004) (0.004) (0.004) (0.004) 
CALURI*log GDP   0.0221***  0.0760*** 
per capita  (0.001)  (0.001) 
log GDP per    1.008*** 1.049*** 
Capita squared   (0.004) (0.004) 
Observations 5,259,215 5,259,215 5,259,215 5,259,215 
Note: robust standard errors in the parentheses. * p<0.10, ** p<0.05, *** p<0.010. The lag terms 
of the log real GDP per capita and log mean GDP per capita in California are used as IVs of their 
contemporaneous terms; the share of high education, the population age and the share of high-
jobs are additional IVs of Models 4-7. The control variables and the estimation method can be 
found in Table 7.  
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Table 10. Counterfactual Experiments: Responses to +SD CALURI (% deviation) 

  production amenity GE 
production 

with GE 
amenity 
with GE total 

Bakersfield 3.22 0.32 -1.73 1.55 0.27 1.81 
Chico 3.23 0.32 -1.73 1.56 0.27 1.82 
Fresno 3.12 0.32 -1.73 1.45 0.27 1.72 
Hanford-Corcoran 0.04 0.32 -1.73 -1.63 0.27 -1.37 
Los Angeles-
Long Beach-Anaheim 5.23 0.32 -1.73 3.55 0.27 3.82 
Madera 1.64 0.32 -1.73 -0.04 0.27 0.23 
Merced 0.35 0.32 -1.73 -1.32 0.27 -1.06 
Modesto 2.02 0.32 -1.73 0.34 0.27 0.61 
Napa 4.74 0.32 -1.73 3.07 0.27 3.33 
Oxnard-Thousand Oaks-
Ventura 3.37 0.32 -1.73 1.70 0.27 1.96 
Redding 4.20 0.32 -1.73 2.52 0.27 2.79 
Riverside-
San Bernardino-Ontario 1.67 0.32 -1.73 0.00 0.27 0.27 
Sacramento-Roseville-
Arden-Arcade 4.89 0.32 -1.73 3.21 0.27 3.48 
Salinas 2.99 0.32 -1.73 1.32 0.27 1.58 
San Diego-Carlsbad 4.94 0.32 -1.73 3.26 0.27 3.53 
San Francisco-
Oakland-Hayward 6.25 0.32 -1.73 4.58 0.27 4.84 
San Jose-Sunnyvale-
Santa Clara 6.25 0.32 -1.73 4.57 0.27 4.84 
San Luis Obispo-
Paso Robles-Arroyo Grande 4.26 0.32 -1.73 2.59 0.27 2.86 
Santa Cruz-
Watsonville 3.57 0.32 -1.73 1.90 0.27 2.16 
Santa Maria-
Santa Barbara 4.52 0.32 -1.73 2.85 0.27 3.11 
Santa Rosa 3.91 0.32 -1.73 2.23 0.27 2.50 
Stockton-Lodi 2.04 0.32 -1.73 0.37 0.27 0.64 
Vallejo-Fairfield 2.14 0.32 -1.73 0.47 0.27 0.73 
Visalia-Porterville 0.80 0.32 -1.73 -0.87 0.27 -0.60 
Yuba City 1.12 0.32 -1.73 -0.55 0.27 -0.29 
mean 3.22 0.32 -1.73 1.55 0.27 1.81 
Note: the numbers reported by MSA are the time average percentage deviations of the counterfactual prices 
from the estimated prices, for the period from 1993 to 2017. The estimated parameters from Model 7 are 
used to construct the counterfactual prices. The price dynamics of MSAs in bold type (most populated 
MSAs in 2006 with leading principal cities available in the Wharton Survey) are plotted in Figure 6.  
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Table 11. Comparison with Quigley, Raphael and Rosenthal (2008) 
Quigley, Raphael and Rosenthal (2008) 
Location San Francisco Bay Area   

Number of cities 86 
Source of Price data 2000 US Census  
Regulatory Index BLURI (from Berkeley Land Use Survey) 
Number of sub-indices 10 
Estimation method OLS and IV 
Results OLS IV 
Marginal effect of regulation 1.2%-2.2% 3.8%-5.3% 
This paper 
Location San Francisco-Oakland-Hayward, MSA  

Number of cities 25 
Source of Price data ZTRAX, 1993-2017 
Regulatory Index CALURI (from Wharton Residential Land Use Survey) 
Number of sub-indices 8 
Estimation method GMM-IV 
Results (GE separated) production amenity GE total 
Marginal effect of regulation 6.25% 0.32% -1.73% 4.84% 
Results (GE incorporated) production with GE Amenity with GE  total 
Marginal effect of regulation 4.58% 0.27%  4.84% 

 

 

Table 12a. Spillover Effect: Los Angeles-Long Beach-Anaheim, MSA 
 (1) (2) (3) 
Variable Benchmark Inv.dist2  Gravity 
CALURI 0.0595*** 0.147*** 0.182*** 
 (0.0015) (0.0093) (0.0100) 
RRI  0.0878*** 0.124*** 
  (0.0091) (0.0099) 
Adjusted R2 0.563 0.564 0.565 
N 52,102 52,102 52,102 
Note: robust standard errors in the parentheses. * p<0.10, ** p<0.05, *** p<0.010. CALURI = 
California Land Use Regulation Index; RRI = Relative Restrictiveness Index. Inv.dist2 uses the 
inverse distance squared to weigh neighboring CALURI. Gravity indicates the specification with the 
city-level income per capita divided by the squared distance as the weight. Omitted control variables 
in all specifications include log city-level per capita income where a property is located and its 
squared term, the number of bedrooms, the number of bathrooms, the log distance to the Central 
Business District (centroid of the nearest core city of an MSA), the log size of a property, the property 
use (single-family, condominium) and the property age. We use the housing transactions in 2014 
from ZTRAX. The data of the city-level per capita income is aggregated from the census tract data 
from the Summary File of the 5-year American Community Survey 2010-2014. 
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Table 12b. Spillover Effect: San Francisco-Oakland-Hayward, MSA 
 (1) (2) (3) 
Variable Benchmark Inv.dist2 gravity 
CALURI 0.0158* 0.0600*** 0.0715*** 
 (0.0081) (0.017) (0.016) 
RRI  0.0410*** 0.0512*** 
  (0.014) (0.013) 
Adjusted R2 0.510 0.511 0.511 
N 19,137 19,137 19,137 
Note: robust standard errors in the parentheses. * p<0.10, ** p<0.05, *** p<0.010. CALURI = 
California Land Use Regulation Index; RRI = Relative Restrictiveness Index. Inv.dist2 uses the 
inverse distance squared to weigh neighboring CALURI. Gravity indicates the specification with the 
city-level income per capita divided by the squared distance as the weight. Omitted control variables 
in all specifications include log city-level per capita income where a property is located and its 
squared term, the number of bedrooms, the number of bathrooms, the log distance to the Central 
Business District (centroid of the nearest core city of an MSA), the log size of a property, the property 
use (single-family, condominium) and the property age. We use the housing transactions in 2014 
from ZTRAX. The data of the city-level per capita income is aggregated from the census tract data 
from the Summary File of the 5-year American Community Survey 2010-2014. 

 

 

Table 12c. Spillover Effect: San Diego-Carlsbad, MSA 
 (1) (2) (3) 
Variable Benchmark Inv.dist2 Gravity 
CALURI 0.125*** 0.257*** 0.262*** 
 (0.0076) (0.023) (0.021) 
RRI  0.103*** 0.106*** 
  (0.018) (0.016) 
Adjusted R2 0.604 0.605 0.605 
N 21,985 21,985 21,985 
Note: robust standard errors in the parentheses. * p<0.10, ** p<0.05, *** p<0.010. CALURI = 
California Land Use Regulation Index; RRI = Relative Restrictiveness Index. Inv.dist2 uses the 
inverse distance squared to weigh neighboring CALURI. Gravity indicates the specification with the 
city-level income per capita divided by the squared distance as the weight. Omitted control variables 
in all specifications include log city-level per capita income where a property is located and its 
squared term, the number of bedrooms, the number of bathrooms, the log distance to the Central 
Business District (centroid of the nearest core city of an MSA), the log size of a property, the property 
use (single-family, condominium) and the property age. We use the housing transactions in 2014 
from ZTRAX. The data of the city-level per capita income is aggregated from the census tract data 
from the Summary File of the 5-year American Community Survey 2010-2014. 
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Table 12d. Spillover Effect: Oxnard-Thousand Oaks-Ventura, MSA 
 (1) (2) (3) 
Variable Benchmark Inv.dist2 Gravity 
CALURI -0.0191** 0.0607*** 0.0679*** 
 (0.0089) (0.022) (0.022) 
RRI  0.0805*** 0.0879*** 
  (0.018) (0.019) 
Adjusted R2 0.429 0.431 0.431 
N 6,272 6,272 6,272 
Note: robust standard errors in the parentheses. * p<0.10, ** p<0.05, *** p<0.010. CALURI = 
California Land Use Regulation Index; RRI = Relative Restrictiveness Index. Inv.dist2 uses the 
inverse distance squared to weigh neighboring CALURI. Gravity indicates the specification with the 
city-level income per capita divided by the squared distance as the weight. Omitted control variables 
in all specifications include log city-level per capita income where a property is located and its 
squared term, the number of bedrooms, the number of bathrooms, the log distance to the Central 
Business District (centroid of the nearest core city of an MSA), the log size of a property, the property 
use (single-family, condominium) and the property age. We use the housing transactions in 2014 
from ZTRAX. The data of the city-level per capita income is aggregated from the census tract data 
from the Summary File of the 5-year American Community Survey 2010-2014. 
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Figures 

 

 
Figure 1: spatial distribution of land use regulation intensity in California. California Land Use 
Regulation Index (CALURI) is based on the sub-indices from WRLURI. A higher index value 
indicates higher regulation intensity. There are 185 jurisdictions in total.  
Source: Gyourko, Saiz and Summers (2008) and authors’ calculation.  
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Figure 2: comparison of the kernel density of California Land Use Regulation Index (CALURI) and 
the normal density. CALURI is based on the sub-indices from WRLURI. A higher index value 
indicates higher regulation intensity.  
Source: Gyourko, Saiz and Summers (2008) and authors’ calculation.  

 

 

  
(a) CALURI vs WRLURI (b) CALURI vs Simple Sum of Sub-indices 

Figure 3: quantile-quantile plots of WRLURI, CALURI and Simple Sum of Sub-indices. We 
compare the index based on the first factor of the principal factor analysis with the simple sum of the 
8 sub-indices underlying CALURI. For comparability, we normalize the sub-indices and their sum, 
so all indices in comparison have zero mean and unit variance.  
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Figure 4: Annual growth rate of the residential mortgage debt of US households and 30-year US 
average fixed-rate mortgage rate. The mortgage rate has been adjusted for inflation. Source: Z.1 
Financial Account Table from the Board of Governors of Federal Reserves and Freddie Mac.  
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Panel (a): no interactive or quadratic term 

 
Panel (b) with the interactive term and the quadratic term of the log GDP per capita 

Figure 5: the log housing price as the function of the log GDP per capita (z) and land use regulation 
intensity (CALURI). The grid of each dimension is simulated using normal distribution, with the 
mean and the standard deviation estimated from the data. Grid points within 90% confidence intervals 
along each dimension are plotted. The parameters are evaluated at the estimated values of Model 4 
in panel (a) and Model 7 in panel (b). The min value along the z-axis is normalized to 0. 
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Figure 6: housing price dynamics of 6 MSAs in California: actual price vs estimated price. The 
estimation is based on Model 7. The prices are aggregated by year and MSA.   

 

  
(a) Production Channel only (b) Amenity Channel only  

Figure 7: graphical illustration of the (net) production and amenity channels. The shift of the housing 
supply or the demand curve is triggered by an increase in land use regulation.  
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Figure 8: kernel density of CALURI and relative restrictiveness indices (RRI). RRI is defined as the 
difference between the neighboring regulatory index and CALURI of the city. We report three ways 
of constructing the neighboring regulatory index, with the weight indicated in the parentheses. 
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(a) weight: inverse distance sq. (b) weight: gravity (per capita income*inv. 

distance sq.) 
Figure 9: CALURI vs relative restrictiveness index. Panels (a) and (b) show the scatter plots using 
different weights in the construction of the neighboring regulatory index. The relative restrictiveness 
index (RRI) of a city is defined as the difference between the neighboring regulatory index and 
CALURI of the city. We rescale RRI to the positive real line with the same mean (4) for comparability. 
We separately mark 4 MSAs (LA = Los Angeles-Long Beach-Anaheim MSA; SF = San Francisco-
Oakland-Hayward MSA; SD = San Diego-Carlsbad MSA; VT = Oxnard-Thousand Oaks-Ventura 
MSA) that are large in terms of and population and the number of cities, and that have high survey 
response rates in the Wharton Residential Land Use survey (Gyourko, Saiz and Summers, 2008).  
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Appendix 

A.1 Proof of Uniqueness of the Equilibrium 

First, rewrite the market clearing condition of city j as follows.  

 
1 1

11
1 0

0

( ) ,  where j j j j j
j j j

Aq b r q b
Y Z c

θ
θ

θ
θ

φ η

θ
α τ

−
−

−
 

= =   
 

  (30) 

We express rj as a function of qj. The equilibrium condition of location choices (5) can be written as 

 ( ) ,  where j j j j j k k kk S
q x Z r q x Z rφ η α φ η ατ τ− −

∈
= =∑   (31) 

Combine two equations and eliminate rj. 
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For an arbitrary n, we can prove that there is a unique set of moving probabilities that solve the 

system of equations. We can solve x from the following equation.  

 ( ) 1jk S
q x

∈
=∑   (33) 

LHS of (33) is a strictly decreasing function of x, while RHS is a weakly decreasing function of 

x. There is a unique solution to the equation. Given x, we can use (33) to fully solve the set of moving 

probabilities.  

For the special case of n = 2, we can solve the model. With qj + qk = 1 and S = {j, k}, 
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Combined with (30), the log housing price can be expressed in the linear form (13).  
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A.2 CALURI by MSA and City 

 

Table A1. City and CALURI 
MSA and City CALURI MSA and City CALURI 
Bakersfield 0.291 Signal Hill city -0.203  
McFarland city 1.735  Redondo Beach city -0.245  
Bakersfield city -0.308  Pico Rivera city -0.279  
Delano city -1.052  Lakewood city -0.279  
Chico 0.190 Tustin city -0.284  
Orland city 0.721  La Palma city -0.289  
Paradise town 0.527  Palmdale city -0.297  
Willows city -0.163  Claremont city -0.302  
Gridley city -0.288  Los Alamitos city -0.351  
Chico city -0.343  Commerce city -0.385  
Fresno 1.032 Whittier city -0.389  
Huron city 2.908  South Pasadena city -0.396  
Selma city 2.429  Lancaster city -0.455  
Kingsburg city 0.841  La Canada Flintridge city -0.459  
Fresno city 0.452  Avalon city -0.544  
Parlier city 0.369  Hermosa Beach city -0.561  
Reedley city 0.236  Alhambra city -0.631  
Hanford-Corcoran -1.280 Calabasas city -0.775  
Corcoran city -0.508  Carson city -0.962  
Avenal city -2.112  Huntington Beach city -0.975  
Los Angeles-Long Beach-Anaheim -0.195 La Habra city -1.042  
Los Angeles city 3.382  Agoura Hills city -1.157  
Glendora city 2.408  Palos Verdes Estates city -1.178  
El Monte city 2.342  Covina city -1.648  
San Fernando city 1.558  Montebello city -1.730  
Irvine city 0.924  Santa Ana city -1.751  
Seal Beach city 0.897  Baldwin Park city -1.889  
Brea city 0.546  Arcadia city NA 
Pomona city 0.322  San Marino city NA 
Compton city 0.280  Madera -0.772 
La Habra Heights city 0.131  Mammoth Lakes town -0.623  
El Segundo city 0.077  Chowchilla city -0.772  
Rancho Santa Margarita city 0.037  Merced 0.830 
Beverly Hills city 0.032  Los Banos city 2.046  
Anaheim city -0.008  Merced city 1.231  
Dana Point city -0.025  Dos Palos city 0.728  
San Clemente city -0.115  Gustine city -0.081  
Gardena city -0.142  Modesto -0.036 
Fountain Valley city -0.198  Waterford city 0.458  
Long Beach city -0.198  Ceres city -0.684  
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Table A1. City and CALURI (continued) 
MSA and City CALURI MSA and City CALURI 
Napa 0.414 Rancho Cordova city 0.070  
Calistoga city 1.114  West Sacramento city -0.353  
St. Helena city 0.363  Rocklin city -0.510  
American Canyon city 0.242  Placerville city -1.072  
Oxnard-Thousand Oaks-Ventura 0.254 Salinas -0.294 
Santa Paula city 2.037  Carmel-by-the-Sea city 2.031  
San Buenaventura (Ventura) city 1.861  Soledad city 0.226  
Camarillo city 0.020  Greenfield city -0.914  
Oxnard city -0.071  Seaside city -1.466  
Ojai city -0.081  San Diego-Carlsbad -0.253 
Simi Valley city -0.327  Encinitas city 1.630  
Port Hueneme city -1.453  Coronado city 1.207  
Redding -0.307 Del Mar city 0.599  
Shasta Lake city 0.173  San Diego city 0.303  
Anderson city -0.584  El Cajon city 0.217  
Weed city -0.768  Vista city -0.086  
Riverside-San Bernardino-Ontario -0.081 Lemon Grove city -0.102  
Beaumont city 1.761  National city -0.596  
Banning city 1.654  Poway city -0.676  
Rancho Mirage city 0.921  Solana Beach city -0.972  
Riverside city 0.842  Santee city -1.035  
Coachella city 0.675  San Francisco-Oakland-Hayward -0.219 
Needles city 0.617  Portola Valley town 1.899  
Chino city 0.590  San Francisco city 1.040  
Corona city 0.419  Belmont city 0.839  
Loma Linda city 0.402  Redwood city 0.648  
Norco city 0.353  Hercules city 0.582  
Palm Desert city -0.180  San Leandro city 0.578  
Yucaipa city -0.236  Larkspur city 0.515  
Chino Hills city -0.287  Woodside town 0.402  
Blythe city -0.299  Martinez city 0.256  
Colton city -0.599  Corte Madera town 0.196  
Montclair city -0.625  San Ramon city 0.159  
Barstow city -0.674  Burlingame city 0.022  
Hesperia city -0.745  Mill Valley city -0.139  
Big Bear Lake city -1.136  Fremont city -0.338  
Canyon Lake city -3.222  Brentwood city -0.397  
Sacramento-Roseville-Arden-Arcade -0.001 Pittsburg city -0.450  
Folsom city 1.370  Millbrae city -0.614  
Lincoln city 0.112  Dublin city -0.664  
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Table A1. City and CALURI (continued) 
MSA and City CALURI MSA and City CALURI 
Sausalito city -0.700  Santa Maria city -0.519  
Menlo Park city -0.703  Santa Rosa 0.653 
Pinole city -0.732  Sonoma city 2.309  
Piedmont city -0.778  Rohnert Park city 0.719  
San Pablo city -0.987  Windsor town -0.027  
Emeryville city -1.430  Stockton-Lodi -0.110 
Hillsborough town -3.232  Ripon city 0.592  
San Jose-Sunnyvale-Santa Clara -0.657 Jackson city -0.219  
Campbell city -0.158  Manteca city -0.407  
Santa Clara city -0.605  Lodi city -0.769  
Morgan Hill city -0.824  Vallejo-Fairfield 0.187 
San Jose city -1.007  Benicia city 0.187  
San Luis Obispo-Paso Robles-Arroyo Grande 0.531 Visalia-Porterville -0.292 
San Luis Obispo city 1.603  Visalia city 0.606  
Morro Bay city 1.046  Exeter city -0.060  
Arroyo Grande city 0.590  Woodlake city -0.079  
Grover Beach city -0.526  Farmersville city -0.674  
Santa Cruz-Watsonville -0.036 Porterville city -0.806  
Scotts Valley city 0.358  Yuba City 0.849 
Capitola city -0.731  Live Oak city 1.532  
Santa Maria-Santa Barbara -0.158 Williams city 0.922  
Buellton city 0.098  Yuba city -1.026  
Note: MSAs are sorted in alphabetic order. Within each MSA, cities are sorted by CALURI in descending 
order. CALURI is defined as the first factor using the principal factor analysis. 8 sub-indices that have city-
level variations from the Wharton Residential Land Use Survey are used: local political pressure index (LPPI), 
local zoning approval index (LZAI), local project approval index (LPAI), density restriction index (DRI), 
open space index (OSI), exactions index (EI), supply restriction index (SRI), approval delay index (ADI). 
Source: Gyourko, Saiz and Summer (2008) and authors’ calculation. 
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Table A2. Survey Response Rates by CBSA in California 
 City and Town Principal City 
CBSA (MSA/μMSA) CA GSS % CA GSS % 
Bakersfield 11 3 27 1 1 100 
Chico 5 3 60 1 1 100 
Clearlake 2 1 50 1 0 0 
Crescent City 1 1 100 1 1 100 
El Centro 7 0 0 1 0 0 
Eureka-Arcata-Fortuna 7 1 14 3 1 33 
Fresno 15 6 40 1 1 100 
Hanford-Corcoran 4 2 50 2 1 50 
Los Angeles-Long Beach-Anaheim 122 48 39 25 13 52 
Madera 2 1 50 1 0 0 
Merced 6 4 67 1 1 100 
Modesto 9 2 22 1 0 0 
Napa 5 3 60 1 0 0 
Oxnard-Thousand Oaks-Ventura 10 7 70 4 3 75 
Red Bluff 3 1 33 1 0 0 
Redding 3 2 67 1 0 0 
Riverside-San Bernardino-Ontario 52 20 38 9 3 33 
Sacramento--Roseville--Arden-Arcade 19 6 32 5 2 40 
Salinas 12 4 33 1 0 0 
San Diego-Carlsbad 18 11 61 4 2 50 
San Francisco-Oakland-Hayward 65 25 38 12 4 33 
San Jose-Sunnyvale-Santa Clara 17 4 24 7 2 29 
San Luis Obispo-Paso Robles-
Arroyo Grande 7 4 57 2 1 50 
Santa Cruz-Watsonville 4 2 50 2 0 0 
Santa Maria-Santa Barbara 8 2 25 3 1 33 
Santa Rosa 9 3 33 2 0 0 
Sonora 1 0 0 0 0 0  
Stockton-Lodi 7 3 43 1 0 0 
Susanville 1 1 100 1 1 100 
Truckee-Grass Valley 3 0 0 2 0 0 
Ukiah 4 1 25 1 1 100 
Vallejo-Fairfield 7 1 14 2 0 0 
Visalia-Porterville 8 5 63 2 2 100 
Yuba City 4 2 50 1 1 100 
Total 458 179 39 103 43 42 
Note: the list of Core Based Statistical Areas (CBSA) includes both MSAs and μMSAs. There are 482 
jurisdictions in California, with 458 tied to the CBSA codes in California. “CA” and “GSS” counts the 
total number of cities and towns in California (CA) and in the sample of Gyourko, Saiz and Summers 
(2008) (GSS) respectively. The columns with “%” calculate the city share of GSS sample in California. 
The definition of the principal cities is based on the historical delineation files of the Principal cities of 
metropolitan and micropolitan statistical areas (2006) from the Census Bureau. The definition of CBSA 
is based on 2010 Geographic Terms and Concepts from the Census Bureau. 
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A.3 Data Filtering and Construction of ZTRAX Variables 

The Whole ZTRAX database consists of two parts: ZTrans (transaction data) and ZAsmt (assessment 

data) that can be linked by a unique parcel ID. For most states, the sample prior to 2005 are scarce; for 

California, the database can trace back to transactions as early as 1993. I first restrict the sample to the 

transaction with the sales prices more than 5,000 US dollars in California. California data before 1993 

(inclusive) is extremely sparse, so our ZTRAX data starts from 1993:M1 and ends in 2017:M6. For the 

other US states, the quality of data before 2005 is generally worse than that after the 2005. California 

data allows us to examine the housing prices and property characteristics in a much longer horizon.  

We keep residential properties only and drop any commercials, manufactural, and foreclosure sales. 

Based on the Property Use Standard Code and Assessment Land Use Standard Code, we identify and 

focus on the residential types including single family residentials, townhouses, cluster homes, 

condominiums, cooperatives, planned unit developments and those inferred as single family residentials 

by Zillow. A transaction can involve multiple parcels, we focus on transactions with a single parcel only. 

We only keep the transactions that can be linked to the housing properties in the assessment data. About 

89% of the transactions are matched to the assessment files.  

 The data fields we use from the housing data include: transaction date, geographic location (county, 

city, CBSA, address longitude and latitude), the sales prices, the number of bedrooms, the number of 

bathrooms, the year a property was built, the square foot of a property and the miles to the nearest core 

cities. There are other housing characteristics available in the database, but they are in general not 

commonly populated.  

There is no separate field to directly observe the size of a property, so we construct the field as 

follows. We are able to observe the following fields relevant to the size of a property: building area 

living, building area finished, effective building area, gross building area, building area adjusted, 

building area total, building area finished living, base building area, heated building area. To take the 

maximum of the fields above and define it as the square footage of a property. 

The miles of a property to the nearest core cities is constructed as follows. We first identify the 

CBSA where a property is located. We use the leading principal cities listed in the name of an MSA and 

geocode the city centers using the application program interface (API) of Google Map. We calculate the 

great-circle distance in miles from each property to the center of each leading principal city in the CBSA 

and define the minimum as the distance to the principal city. A small number of cities are not assigned 

to any CBSA. We thus geocode the distance from the properties in each of the cities to the nearest 

leading principal cities in all CBSAs in California using the API of Google Map.53 We assign these 

cities to the nearest MSAs, so they don’t fall out of sample in the analysis.  

                                                        
53 6 cities whose fips county codes don’t fall in any MSA in California are assigned to the nearest metropolitan statistical 
area. They are Jackson City, Williams City, Orland City, Willows City, Mammoth Lakes Town, and Weed City.  
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The number of annual transactions in California ranges from 100,000 to 600,000, depending on 

the year. There are about 13 million transactions in total from about 1,400 cities available to be matched 

to the Wharton Land Use Survey data.  

 

A.4 Auxiliary Regression 

We log-linearize the definition identity of amenity demand as follows. 

 1 ln ln
1j j j j j jA Z z Aφ η ητ τ

φ
−= ⇔ = − +

−
  (35) 

We exogenously estimate the elasticity of per capita income Zj with respect to τj for an additional 

moment condition in the estimation. Amenity is unobservable, so it is treated as the error plus a constant 

term. Our data points are 25 MSAs in year 2006 and the regression analysis is cross-sectional. In Table 

A2, we report three specifications. Model 1 include CALURI as the only independent variable. Model 

2 add three more variables: the share of high-tech jobs from the regional dataset of Moody’s Analytics 

collected from BLS and BEA, the mean household age from American Community Survey (ACS) 

Public Use microdata, and the share of high education (college + graduate study) from ACS microdata. 

These three factors are highly correlated with per capita income. We show their correlation in Table 6.  

Model 3 include more controls based on Model 2. Data on the net migrants (in thousand) and total 

population (in thousand) come from the regional data set of Moody’s Analytics collected from the 

Census Bureau. Data on employment (in thousand) comes from Moody’s Analytics collected from BLS 

(CES and QCEW). The minority share is the fraction of non-white individuals surveyed in ACS 

microdata. The cost-of-doing-business index is provided by Moody’s Analytics. The index is the 

weighted average of unit labor costs, energy costs, tax burden and office rents. It is an index that 

standardizes the US average to 100.  

 We find that the coefficients of CALURI is close to zero. The insignificance of the coefficient is 

probably due to the small size of the MSAs. We use the estimate from Model 3 to construct the following 

condition for estimation.  

 1η φ= 0.0033 ⋅( −1)   (36) 
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Table A3. Auxiliary Regression of log GDP per capita 
 Model 1 Model 2 Model 3 
CALURI 0.0176 0.0131 -0.00331 
 (0.097) (0.055) (0.028) 
share of high-tech job  0.00747 -0.00167 
  (0.008) (0.005) 
log household age  -0.190 0.313 
  (0.949) (0.576) 
share of high education  2.275** -0.0173 
  (0.808) (0.470) 
net migrant   0.000664 
   (0.002) 
log population   -1.001*** 
   (0.189) 
log employment   1.012*** 
   (0.177) 
business cost index   -0.00128 
   (0.004) 
minority share   0.166 
   (0.202) 
Constant 3.855*** 3.728 3.837 
 (0.050) (3.148) (2.350) 
Observations 25 25 25 
Note: robust standard errors in the parentheses. * p<0.10, ** 
p<0.05, *** p<0.010. 
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A.5 Structural Parameter Estimates 

In Table A4, we report the estimation of the structural parameters. Without housing characteristics 

properly controlled in Model 1, we tend to underestimate θ by 33%, but to overestimate α and ϕ by 49% 

and 1.5% respectively, compared to the estimated values in Model 2. GMM-IV estimations produce 

comparable estimated parameters in Models 3 and 4. Compared with Model 2, Model 4 which treats 

contemporaneous per capita income as endogenous yield bigger estimated values of ϕ and θ. We find 

that θ = 0.045 and ϕ = 1.803 in Model 4, while θ = 0.043 and ϕ = 1.753 in Model 2. The estimation in 

Model 4 indicates that the income elasticity of amenity demand is 0.803 (or 1.803 - 1). That is, 1% 

increase in the per capita income increases the amenity demand by 0.803% on average.54 

 

Table A4. Benchmark Estimation: Structural Parameters 
 Model 1 Model 2 Model 3 Model 4 
 GMM GMM GMM-IV GMM-IV 
θ 0.029*** 0.043*** 0.042*** 0.045*** 

 (0.000) (0.000) (0.000) (0.000) 
λ 0.787*** 0.710*** 0.720*** 0.751*** 

 (0.002) (0.002) (0.002) (0.002) 
ϕ 1.779*** 1.753*** 1.754*** 1.803*** 

 (0.005) (0.004) (0.004) (0.004) 
α 3.811*** 2.554*** 2.681*** 3.152*** 
 (0.048) (0.040) (0.042) (0.042) 
η 0.003*** 0.002*** 0.002*** 0.003*** 
 (0.000) (0.000) (0.000) (0.000) 
Note: robust standard errors in the parentheses. * p<0.10, ** p<0.05, *** 
p<0.010. The lag terms of log real GDP per capita and log mean GDP per capita 
in California are used as IVs of their contemporaneous terms in Models 3-4; the 
share of high education, the population age and the share of high-jobs are 
additional IVs of Model 4. 

 

 In Table A5, we replicate the GMM estimations in Table 5, but instead use WALURI as the 

regulatory index instead. Compared to CALURI constructed only from the subsample of California 

cities, WALURI is estimated nationally from more than 2,000 jurisdictions.  

In Table A6, we report the estimates of the structural parameters under four model specifications. 

The average income elasticity of amenity demand is adjusted upward from 0.803 in the benchmark to 

the 1.030 in the fully extended model. The coefficient of the quadratic term ϕ2 is positive, indicating 

that the income elasticity of amenity demand increases with income. 

 

 

                                                        
54 In the model, the parameters are not free to take any value on the real line. In the GMM or GMM-IV estimations, we 
solve the minimization problems without parameter constraints, so our estimations of α may fall out of the unit interval.  
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Table A5. Estimation with WRLURI 
 Model 1 Model 2 Model 3 Model 4 
 GMM GMM GMM-IV GMM-IV 
WRLURI 0.109*** 0.117*** 0.117*** 0.124*** 
 (0.000) (0.000) (0.000) (0.000) 
log GDP per  1.185*** 1.295*** 1.280*** 1.265*** 
capita (0.001) (0.001) (0.001) (0.001) 
log Avg. 0.556*** 0.405*** 0.427*** 0.482*** 
GDP per cap (0.005) (0.004) (0.004) (0.004) 
Bedroom: 1  -0.0670*** -0.0677*** -0.0639*** 
  (0.003) (0.003) (0.003) 
Bedroom: 2  -0.230*** -0.231*** -0.223*** 
  (0.003) (0.003) (0.003) 
Bedroom: 3  -0.318*** -0.320*** -0.315*** 
  (0.003) (0.003) (0.003) 
Bedroom: 4+  -0.381*** -0.383*** -0.380*** 
  (0.003) (0.003) (0.003) 
Bathroom: 1  0.107*** 0.107*** 0.0712*** 
  (0.006) (0.006) (0.006) 
Bathroom: 2  0.185*** 0.187*** 0.138*** 
  (0.006) (0.006) (0.006) 
Bathroom: 3  0.136*** 0.139*** 0.0843*** 
  (0.006) (0.006) (0.006) 
Bathroom: 4+  0.272*** 0.277*** 0.229*** 
  (0.006) (0.006) (0.006) 
log sq.feet  1.066*** 1.065*** 1.082*** 
  (0.001) (0.001) (0.001) 
log miles to  -0.0236*** -0.0235*** -0.0292*** 
core cities  (0.000) (0.000) (0.000) 
SFR  -0.0402*** -0.0420*** -0.0555*** 
  (0.001) (0.001) (0.001) 
condominium  0.0118*** 0.0118*** 0.00944*** 
  (0.001) (0.001) (0.001) 
Age: 1-5  0.134*** 0.134*** 0.120*** 
  (0.001) (0.001) (0.001) 
Age: 6-10  0.0858*** 0.0860*** 0.0740*** 
  (0.001) (0.001) (0.001) 
Age: 11-20  0.0645*** 0.0649*** 0.0556*** 
  (0.001) (0.001) (0.001) 
Age: 21-30  0.0544*** 0.0553*** 0.0408*** 
  (0.001) (0.001) (0.001) 
Age: 31-40  0.103*** 0.104*** 0.0898*** 
  (0.001) (0.001) (0.001) 
Age: 41-50  0.122*** 0.124*** 0.114*** 
  (0.001) (0.001) (0.001) 
Age: > 50  0.124*** 0.127*** 0.118*** 
  (0.001) (0.001) (0.001) 
growth rate of 3.057*** 3.006*** 3.000*** 2.865*** 
mortgage debt (0.008) (0.006) (0.006) (0.006) 
30-year FRM  -3.894*** -3.150*** -3.064*** -2.553*** 
rate (0.049) (0.040) (0.041) (0.041) 
Constant 5.658*** -1.916*** -1.945*** -2.178*** 
 (0.021) (0.021) (0.021) (0.021) 
Observations 5,259,215 5,259,215 5,259,215 5,259,215 
Note: robust standard errors in the parentheses. * p<0.10, ** p<0.05, *** p<0.010. The base levels of the factor 
variables are: no bedroom, no bathroom, property use other than single-family and condominium, new property (age 
is zero). The lag terms of log real GDP per capita and log mean GDP per capita in California are used as IVs of their 
contemporaneous terms in Models 3-4; the share of high education, the population age and the share of high-jobs are 
additional IVs of Model 4. 
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Table A6. Estimation with Non-Linear Effects: Structural Parameters 
 Model 4 Model 5 Model 6 Model 7 
 GMM-IV GMM-IV GMM-IV GMM-IV 
θ 0.045*** 0.045*** 0.048*** 0.049*** 
 (0.000) (0.028) (0.000) (0.000) 
λ 0.751*** 0.748*** 0.684*** 0.678*** 
 (0.002) (0.001) (0.002) (0.002) 
α 3.152*** 3.106*** 2.273*** 2.212*** 
 (0.033) (0.092) (0.033) (0.033) 
δ0 1 -0.944*** 1 -5.124*** 
  (0.385)  (0.097) 
δ1 0 0.489***  1.540*** 
  (0.097) (0.000) (0.024) 
ϕ0 0 0 16.748*** 17.458*** 
   (0.066) (0.067) 
ϕ1 1.803*** 1.800*** -6.389*** -6.748*** 

 (0.005) (0.053) (0.032) (0.033) 
ϕ2 0 0 1.059*** 1.104*** 
   (0.004) (0.004) 
ϕavg 1.803*** 1.800*** 2.032*** 2.030*** 
 (0.005) (0.053) (0.005) (0.005) 
η 0.003*** 0.003*** 0.003*** 0.003*** 
 (0.000) (0.000) (0.000) (0.000) 
Note: robust standard errors in the parentheses. * p<0.10, ** p<0.05, *** p<0.010. 
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A.6 Quantifying the Contribution of Production and Amenity Channel to Housing Prices 

We evaluate the contribution of the production, the amenity, and the general equilibrium channels at the 

MSA level, because our measure of the per capita income only varies by MSA. We aggregate the city-

level regulatory measure using the probability weight provided by Gyourko, Saiz and Summers (2008). 

For any MSA-year combination, we calculate the levels of the estimated housing prices Pmt and the 

counterfactual prices that exclude the production, the amenity or the GE channels Pmt,-prod, Pmt,-amen and 

Pmt,-ge as follows.  

 
,

,

,

exp[ (ln )]
exp[ (ln ) ( )]
exp[ (ln ) ( )]
exp[ (ln ) ( )]

mt ij ijmt

mt prod ij ijmt j jmt

mt amen ij ijmt j jmt

mt ge ij ijmt j jmt

P E p
P E p E prod
P E p E amen

P E p E ge

−

−

−

=

= −

= −

= −

  (37) 

 Eij denotes the empirical mean aggregating households and cities. For the counterfactual price 

excluding the production channel (hereafter, counterfactual production price), we interpret it as the price 

that normalizes the production effect to the mean but keeps everything else constant. For the 

counterfactual price excluding the amenity channel (hereafter, counterfactual amenity price), we 

interpret it as the price that normalizes the amenity effect to the mean but keeps everything else constant. 

For the counterfactual price excluding the GE channel (hereafter, counterfactual GE price), we can 

interpret it as the price that normalizes the GE effect to the mean but keeps everything else constant.  

To evaluate the production effect of regulation, we conduct the experiments that exclude the 

production channel. The result by MSA is reported in Column 1 of Table A7. The percentage deviation 

of an MSA measures the size of the production effect. For an MSA with the average per capita income, 

a positive (negative) deviation indicates how much the price will increase (decrease) due to the 

production effect if the cost of housing supply counterfactually increases (decreases) from a below-

mean (above-mean) level to the mean.  

To evaluate the amenity effect of regulation, we conduct the experiments that exclude the amenity 

channel. The result by MSA is reported in Column 2 of Table A7. The percentage deviation of an MSA 

measures the size of amenity effect. For an MSA with the average per capita income, a positive (negative) 

deviation indicates how much the price will increase (decrease) due to the amenity effect if the amenity 

level increases (decreases) from a below-mean (above-mean) level to the mean.  

 To evaluate the GE effect of regulation, we conduct the experiments that exclude the GE channel. 

The result by MSA is reported in Column 3 of Table A7. The percentage deviation of an MSA measures 

the size of GE effect. For an MSA with average per capita income, a positive (negative) deviation 

indicates how much the price will increase (decrease) due to the GE effect if households are 

counterfactually not moving out (in) for higher utility.  
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 Similarly, we also calculate the levels of the counterfactual prices that exclude the production with 

GE effect Pmt,-prod,ge, and the amenity channel with GE effect Pmt,-amen,ge as follows. 

 
, , ,

, , ,

exp[ (ln ) ( )]
exp[ (ln ) ( )]

mt prod ge ij ijmt j jmt ge

mt amen ge ij ijmt j jmt ge

P E p E prod
P E p E amen

−

−

= −

= −
  (38) 

 The production and the amenity channels with GE effects are reported in Columns 4-5 in Table A7. 

 

Table A7. Counterfactual Experiments: Size of the Channels 
 Prices excluding Prices excluding 

MSA production amenity GE 
production 
with GE 

amenity 
with GE 

Bakersfield 1.02 0.10 -0.55 0.49 0.08 
Chico 0.33 0.03 -0.18 0.16 0.03 
Fresno -1.61 -0.17 0.90 -0.75 -0.14 
Hanford-Corcoran -0.01 0.33 -1.73 -1.69 0.27 
Los Angeles-Long Beach-
Anaheim -3.78 -0.24 1.27 -2.60 -0.19 
Madera 1.07 0.23 -1.23 -0.13 0.19 
Merced -0.50 -0.46 2.51 1.91 -0.38 
Modesto 0.86 0.14 -0.73 0.14 0.11 
Napa -1.72 -0.12 0.66 -1.10 -0.10 
Oxnard-Thousand Oaks-
Ventura -0.74 -0.07 0.39 -0.36 -0.06 
Redding 1.50 0.11 -0.60 0.90 0.09 
Riverside-San Bernardino-
Ontario -0.43 -0.07 0.39 -0.06 -0.06 
Sacramento-Roseville-
Arden-Arcade -0.76 -0.05 0.28 -0.49 -0.04 
Salinas -0.30 -0.04 0.20 -0.11 -0.03 
San Diego-Carlsbad -1.10 -0.07 0.39 -0.73 -0.06 
San Francisco-Oakland-
Hayward -0.95 -0.05 0.26 -0.69 -0.04 
San Jose-Sunnyvale-
Santa Clara 6.02 0.30 -1.60 4.37 0.25 
San Luis Obispo-
Paso Robles-Arroyo Grande -3.76 -0.29 1.57 -2.30 -0.24 
Santa Cruz-Watsonville 0.35 0.03 -0.16 0.20 0.02 
Santa Maria-Santa Barbara 2.25 0.16 -0.85 1.41 0.13 
Santa Rosa -3.70 -0.31 1.66 -2.16 -0.25 
Stockton-Lodi 0.87 0.14 -0.74 0.15 0.11 
Vallejo-Fairfield -0.40 -0.06 0.32 -0.09 -0.05 
Visalia-Porterville -0.19 -0.06 0.33 0.12 -0.05 
Yuba City 0.78 0.22 -1.19 -0.38 0.18 
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