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Abstract

This paper estimates people’s taste for living with own-ethnic-group neigh-
bors using variation from a natural experiment in Singapore: ethnic housing quo-
tas. I develop a location choice model thal informs the use ol policy variation
from the quotas to address endogeneity issues well-known in the social interac-
tions literature. 1 assembled a dataset on neighborhood level ethnic proportions
by matching more than 500,000 names in the phonebook to ethnicities. T find
that all groups want to live with some own-ethnic-group neighbors but they also
exhibit inverted U-shaped preferences so that once a neighborhood has enough
own-ethnic-neighbors, they would rather add a new neighbor from other groups.
Welfare simulations show that about 30% of the neighborhoods are within one

standard deviation of the first best allocation of ethnic groups.
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1 Introduction

There are many policies around the world designed to encourage ethnic desegregation
in housing markets. In Chicago, the Gautreaux program (the predecessor of the Moving
Towards Opportunity program) offered rent subsidies to African American residents of
public housing who wanted to move to desegregated areas. Germany, the United King-
dom and Netherlands, impose strict restrictions on where refugee immigrants can settle.
Many countrics also have “integration maintenance programs” or “ncighborhood stabi-
lization programs” to encourage desegregation.! These policies are often controversial as
they are alleged to favor some ethnic groups at the expense of others. Regardless of the
motivation behind these policies, knowing the welfare effects is important because these
desegregation policies affect the location choices of many individuals.

This paper estimates the taste for own-ethnic-group neighbors (ethnic preferences) us-
ing variation from onc such cthnic desegregation policy in Singapore: the ethnic housing
quotas. I develop a residential location choice model to study how heterogeneous house-
holds sort into neighborhoods as the ethnic proportions in the neighborhood change.?
My model provides theoretical underpinnings that inform the use of policy variation from
the ethnic quotas to address endogeneity issues well-known in the literature on social
interactions and residential segregation.? T am able to model social interactions at such
a local level because I assembled a dataset of ethnie proportions by hand-matching more
than 500,000 names to ethnicities using the Singapore residential phonebook. I combined
this phonebook data with data I collected on housing transaction prices, neighborhood
choices of movers from different ethnic groups (caleulated by matching names between
two sequential phonebooks) and attributes of neighborhoods, such as school quality and
the age of buildings.

The ethnic housing quotas in Singapore is a fascinating natural experiment.* It was

1See Polikoff (1986) for a review of these policies.

2There is a large literature on sorting in housing markets (eg. Tiebout (1956), Benabou (1993) and
Epple and Sieg (1997)). My location choice model uses a discrete choice framework that builds on
McFadden (1973, 1978), Berry (1994) and Berry et al. (1995). For examples of discrete choice models
in the urban economics literature, see Quigley (1985) and Nechyba and Strauss (1998).

3Gee Manski (1993), Brock and Durlauf (2001, 2002), Bayer and Timmins (2005, 2007) for papers on
social interactions. The seminal paper on residential segregation is Schelling (1971). Most studies that
investigate the causes of residential segregation (Gabriel and Rosenthal (1989); Harsman and Quigley
(1995); Cutler et al. (1999); Bajari and Kahn (2005); Card et al. (2008)) do so at the MSA or PUMA
level. See Bayer et al. (2007) for an exception (they use restricted data at the Census block group level).
I estimate location choices at the neighborhood level. The average neighborhood in Singapore has 4000
households and an average land area of 1.5 square miles.

1There is a growing literature on ethnic desegregation policies (eg. Rosenbaum (1992, 1995), Edin
ct al. (2003) and Damm (009b)). Moffitt (2001) investigates the use of desegregation policics as natural
experiments to study social interactions. These papers do not include welfare analysis of these policies



implemented in public housing estates in 1989 to encourage residential desegregation
amongst the three major ethnic groups in Singapore — Chinese (77%), Malays (14%)
and Indians (8%) (Singapore Department of Statistics, 2000). The quotas arc upper
limits on the proportions of Chinese, Malays and Indians at a location. Locations with
ethnic proportions that are at or above the quota limits are subjected to restrictions
designed to prevent these locations from becoming more segregated. For example, non-
Chinese sellers living in Chinese-constrained locations are not allowed to sell to Chinese
buyers because this transaction increases the Chinese proportion and makes the location
more scgregated. Without the quota policy, profit-maximizing sellers would sell to the
highest bidder and equilibrium prices for the same location would not differ by the
ethnic group of the buyer because any differences would be arbitraged away by sellers.’
The ethnic-based restrictions of the quota limits arbitrage opportunities. This price
discrimination-like mechanism generates equilibrium price dispersion across buyers from
different ethnic groups, making it possible, for example. to observe Chinese and non-
Chincse buyers paying different prices for the same location, in equilibrium.

[ begin my empirical analysis by documenting price dispersion across ethnic groups
using a descriptive analysis of price effects, in the spirit of the “regression kink design”
(Card et al., 2009).° The strategy is to identify kinks in the outcome variable that
coincide with kinks in the policy rule. Using transactions data close to the quota limits
and controlling for polynomials of ethnic proportions. I estimate statistically significant
discontinuities in prices that suggest heterogeneity in ethnic preferences. If Chinese
and non-Chinese buyers had the same willingness-to-pay for Chinese neighborhoods, the
quotas would have no price effects because there would have been no price differences
across ethnic groups to be arbitraged away in the first place. Moreover, when 1 control
for the ethnic weights of the buyers, 1 find evidence of price dispersion across ethnic
groups that is consistent with the price discrimination mechanism of the quotas.

I take these findings of price dispersion from the reduced form analysis to develop

and estimate a location choice model. In an improvement over existing research, my

because they do not estimate preferences.

5This paper focuses on estimation of the demand side. T do not model supply decisions explicitly.
All sellers are assumed to be profit-maximizing so that the ethnicity of the seller does not matter. An
important caveat is discrimination in the housing market (eg. Chinese sellers charging Chinese and
non-Chinese buyers different prices), something I return to later in the paper.

%While the estimation equations are very similar to regression discontinuity (Angrist and Lavy,
1999; Hahn et al., 2001; Lee, 2008), it does not fit within a standard regression discontinuity design
(RDD) framework (Imbens and Lemieux, 2008) because the regressor of interest (ethnic proportions)
is endogenous. To implement RDD, I would need pre-policy data on ethnic proportions and prices.
Therefore, the identification strategy in the descriptive analysis is more similar to Card et al. (2009)'s
study on the impact of previous earnings on unemployment insurance benefits.



model allows the taste for unobserved neighborhood amenities to vary across ethnic
groups. This is an important improvement in urban models with social interactions
because the observed ethnic proportions in a neighborhood (the key explanatory variable)
are correlated with ethnic-specific taste for unobserved amenities. Estimating utility
over locations without allowing the taste for unobserved neighborhood amenities to vary
across ethnic groups would bias the estimates of ethnic preferences (the coefficient on
ethnic proportions) upwards.

However, a location choice model with ethnic-specific taste for unobserved amenities
is under-identified in most empirical scttings. The standard empirical strategy is to
correlate neighborhood choices with ethnic proportions. Without the quotas, we would
be under-identified because the neighborhood choices of Chinese movers, for example,
would be positively correlated with both the taste for observed Chinese neighbors and
the taste for unobserved Chinese amenities.

The ethnic quotas generate another source of neighborhood-by-ethnic group variation:
prices. In Chinese-constrained neighborhoods, the price paid by Chinese and non-Chinese
buyers can be different for the same neighborhood due to the price discrimination effects
of the quota. This price dispersion helps to identify the Chinese taste for amenities
separately from the non-Chinese taste for amenities: Conditional on the proportion of
Chinese living in a neighborhood (stock), Chinese buyers (flow) are willing to pay more
than non-Chinese buyers if they have a stronger taste for amenities in that neighborhood
than non-Chinese. Therefore, the model with both ethnic-specific taste for neighborhood
proportions and cthnic-specific taste for neighborhood amenities is no longer under-
identified using ncighborhood-by-cthnic group variation in both location choices and
prices.

I operationalize the identification approach above by using the quota policy to gener-
ate new instruments (and new moments) for ethnic-specific prices. that are conditionally
mean independent from amenities. T first follow the literature and use instruments (in-
cluding historical ethnic settlements in Singapore and attributes from nearby but not
adjacent neighborhoods) to isolate plausibly exogenous variation in cthnic proportions,
and hence, variation in the probability that the quotas bind. That is, my instruments
are quota probabilities (probability that the quota is constrained) that are constructed
based on whether the estimated ethnic proportions are above the quota limits.”

The step function of the policy rule is important.® The identification assump-

7Actual quota dummies are not instruments because they are likely to bind when ethnic proportions
or the level of ethnic-specific amenities are high.

#The rule is a step function because the block or neighborhood is constrained when the ethnic
proportions arc above the quota limit and unconstrained otherwise.



tion is that the estimated quota probabilities are correlated with ethnic-specific prices
through price discrimination. but conditionally mean independent of the taste for un-
observed amenities. This assumption fails if other neighborhood attributes also affect
prices discontinuously at the policy limits. The effect of the quota probabilities is non-
parametrically identified using the step function of the quota policy. This represents a
novel use of non-parametric instrumental variables within a structural location choice
model.® Using the method of simulated moments. I estimate three location choice models
simultancously, one for cach ethnic group.

My estimates show that all groups have strong preferences for living with members of
their own ethnic group but the shapes of the preferences are very different across the three
ethnic groups. All groups have ethnic preferences that are inverted U-shaped but with
different turning points. This means that once a neighborhood has enough members
of their own ethnic group. households want new neighbors from other ethnic groups.
Previous research in the United States has documented evidence of tastes for diversity
using data on racial attitudes from the General Social Survey (Aldrich ct al., 2005)
but most estimation of ethnic preferences have not investigated such non-monotonicity
because they have focused on linear models.

These estimates that distinguish the taste for own-ethnic-neighbors from the taste for
ethnic-based amenities are important for policy. They are inputs for cost benefit analyses
that can inform trade-offs between the use of ethnic-based amenities versus the use of
location choice restrictions to encourage residential desegregation. The inverted U-shape
of Chinese preferences suggest that the average Chinese prefers neighbors from other
cthnic groups on the margin, and yet, 9% of the neighborhoods are Chinese-constrained
in my data in an average month. This suggests that these neighborhoods could be
constrained because of strong Chinese taste for amenities in these neighborhoods.

I use these estimates of ethnic preferences to perform first best simulations. To my
knowledge. this is the first welfare analysis of desegregation policies. Due to externalities
(a mover affects the utility of his current and future neighbors by changing the ethnic
composition of the neighborhood), the decentralized equilibrium may not achicve the
first best spatial allocation of ethnic groups. In cases where both mixed and segregated
equilibria exist, policies such as the ethnic quotas could be used as a coordination mech-
anism to achieve the mixed equilibrium (Schelling, 1971). Under the quota policy, T find

that 32%, 35% and 31% of neighborhoods are within 1 standard deviation of the first

%In a related location choice model, Bayer et al. (2007) embed a boundary discontinuity design in
a structural model. Instead of using instrumental variables, the idea is that differential sorting across
school district boundaries generates arguably exogenous variation in ethnic proportions, since the main
source of sorting—school quality—is observed and can be controlled for.



best allocation of Chinese, Malays and Indians respectively. The standard deviations are
7% for Chinese and Malays and 3% for Indians.

In the next section, I discuss the background of ethnic quotas in Singapore. Then, I
describe the data (Section 3) and provide a descriptive analysis of quota effects on prices
(Section 4). I then build a model of individual utility over residential locations that
incorporates price discrimination (Section 5), discuss estimation of the model (Section

6) and present the results (Section 7). Finally, I conclude in Section 8.

2 Background

Singapore is a multi-ethnic country with a population of 4.5 million (Singapore Depart-
ment of Statistics, 2006). The three major cthnic groups are the Chinese (77%), the
Malays (14%) and the Indians (8%).!® The Chinese have the highest median monthly
income (5$2335). followed by the Indians (S$2167) and the Malays (S$1790) (Singapore
Census, 2000).

Public housing is the most popular choice of housing in Singapore. The units are built
and managed by the Housing Development Board (HDB). Its missions include providing
affordable housing of quality and value, creating vibrant and sustainable towns and
promoting the building of active and cohesive communitics. The HDB was created in
1960 to solve Singapore’s housing crisis. At that time. many Singaporeans were living
in slums and crowded settlements. HDB promptly began building thousands of HDB
units and rapidly increased the share of Singaporeans living in public housing from 9%
in 1960 to 82% today.!!

Public housing in Singapore is based on the concept of new towns: self-contained,
large scale satellite housing developments that usually includes public housing units, a
town center and a range of amenitics. HDB dwellings arc relatively uniform. There are
eight types of HDB units: type 1 are one-room units (studios), types 2 to 5 are two- to
five-room units. The remaining three types (Fxecutive, ITUDC and Multi-Generation)
are essentially larger and more expensive units with different layouts.

There are three ways Singapore residents can live in an HDB unit. They may apply

through the primary allocation system for new HDB units,'? they may purchase existing

10A]l three ethnic groups are citizens or permanent residents, none are immigrants.
' For more details, see http: / /www.hdb.gov.sg,/fi10/fi10320p.nsf/w/ About UsHDBHistory? OpenDocument.
12 All cligible Singapore citizens can apply to buy new HDB units in the primary market. To be cligible,

the applicant must be married, aged 21 and above and have gross income below a ceiling determined

by HDB for that year. The primary market comprises mostly new HDB units that are built-to-order

in new HDB estates. Most applicants are first time buyers because applicants must not have interest

in any other property within 30 months of the application. Applicants can submit a request for one of



HDB units in the resale market or they may rent. The rental market is negligible
(98% percent of the HDB units are owner-occupied) because rentals are regulated to
ensure that public housing is used for primary residences only (Housing Development
Board, 2006).1* This paper focuses on the resale market only and only includes HDB
neighborhoods in the resale market. Relative to the primary market which is heavily
regulated, the resale market functions as an open market.

To understand the ethnic quotas, it is important to understand the geography of
housing markets in Singapore. The smallest spatial unit is an HDB unit. An HDB block is
a multi-storeyed apartment block with an average of 74 houscholds. HDB neighborhoods
are clusters of HDB blocks. The average neighborhood in Singapore has 4000 households,
45 HDB blocks and an average land area of 1.5 square miles. Due to the high population
density in Singapore, a neighborhood is comparable to a US Census block group by land
area but it is comparable to a US Census tract by population size. HDB towns are
clusters of HDB neighborhoods.

Figure 1 shows a map of an HDB community with HDB blocks and HDB ncighbor-
hoods. HDB blocks and neighborhoods arc terms used by HDB to describe clusters of
public housing units. Throughout the paper, blocks and neighborhoods refer to HDB
blocks and HDB neighborhoods. Each number in the map corresponds to an HDB block.
Notice that the block numbers range from 100 to 600. There are four HDB neighbor-
hoods in the map. All blocks that range from 100 to 199 belong to neighborhood 1 and
all blocks from 200 to 299 are in neighborhood 2 and neighborhoods 4 and 5 are defined
similarly. HDB neighborhoods are clusters of HDB blocks that are spatially contained,
and sceparated from other HDB neighborhoods and other private housing by main roads.
All TIDB blocks and neighborhoods include public housing units only. There are no
private housing units in this map.

The government of Singapore introduced the Ethnic Integration Policy to address
the 'problem' of the increase in the 'concentrations of racial groups' in HDB estates
(Parliamentary Debates, 1989).!* The policy was debated in parliament on February
16, 1989 and was implemented two wecks later on March 1, 1989, It is a set of quota
limits at the DB block and DB neighborhood level. Table 1 lists the quota limits,

the eight HDB types of units and also a preference for one of the three HDB zones (North, North East
and West). A computer ballot will determine the applicants’ queue position to book a unit. Lottery
winners are given three months to select a new unit. They will typically wait two to three years before
the unit is completed in the new HDB estate. After five years, the owners are [ree to sell their units in
the resale market.

¥ In my sample period, owners of public housing are only allowed to rent if they can prove that they
need to be out of the country for an extended period.

MRacial harmony is important in Singapore because of violent racial riots in the 1960s.



in comparison to the 2000 national ethnic proportions. These limits are the same for
all locations in Singapore. They were calculated in 1989 according to the population's
ethnic mix and the projected rate of household formation. Neighborhood quotas are 2%
to 8% above the national ethnic proportions in 2000. Block quotas are 3% above the
neighborhood quotas, allowing more flexibility at the block level because blocks can be
more segregated than neighborhoods. In practice. the HDB did not want to evict owners
in existing units that were in violation of the quotas. To this day, there exist blocks and

neighborhoods whose ethnic proportions exceed the quota limits.

Price discrimination mechanism of quotas

The quotas are upper limits on ethnic proportions to prevent HDB communities that
are already segregated from becoming more segregated. Any transaction that makes a
HDB block or neighborhood that is already above the upper limit more segregated is
prohibited.'® Table 2 lists the types of transactions allowed or not allowed, for each
ethnic quota. Transactions involving buyers and sellers from the same ethnicity will
always be allowed because this does not increase the cthnic proportion. If a transaction
involves units in blocks or neighborhoods that are Chinese-constrained, Chinese buyers
cannot buy from non-Chinese sellers because this increases the proportion of Chinese in
that neighborhood (similarly for Malay and Indian quotas).

This ethnic-based restriction prevents arbitrage and thus allows prices to differ across
ethnic groups in equilibrium. Without the quotas, profit-maximizing sellers will sell
to top bidders. With the quotas, even if Chinese buyers are willing to pay more than
non-Chinese buyers for units in a Chinese-constrained ncighborhood, non-Chinese sellers
cannot arbitrage the price differences between Chinese and non-Chinese buyers because
non-Chinese sellers cannot sell to Chinese buyers. Therefore. equilibrium prices can differ

by ethnic groups. 1 refer to this as the price discrimination effect of the quota.

3 Data

I use data covering resale transactions in the public housing market in Singapore between

April 2005 and March 2006. This dataset encompasses virtually all of Singapore.'6 1

15These restrictions are easily enforced because the identity cards of all Singaporeans report their
ethnicity. Also, all resale transactions have to be approved by the HDB. One of the approval steps
involves checking whether the transaction violates the ethnic housing quotas. During my sample period,
an inter-cthnic married couple ean choose to use cither ethnicities of the spouses.

16T he analysis only focuses on the public housing market which represents 82% of the citizens and
permanent residents in Singapore, To the extent that housecholds with strong ethnic preferences have
sorted away from being regulated by the quotas and into the unregulated private housing market, the
estimates of ethnie preferences from the resale market would be a lower bound because the public



begin with the universe of all HDB blocks that I obtained from a Census of HDB units. I
dropped 88 HDB blocks because 1 could not match the street address in the HDB Census
to HDB neighborhoods (the Census only included block numbers and street names) and
I dropped another 152 HDB blocks that were not part of HDB neighborhoods in the
Ethnic Integration Policy. In total, I have 8 587 HDB blocks, 170 HDB neighborhoods
and 7 markets. A market is a cluster of neighborhoods, categorized according to the
Straits Times Real Estate Classifieds (the leading English newspaper in Singapore). The
newspaper maps postal sectors to markets (postal sectors are represented by the first two
digits of the postal code. Each HDB neighborhood is represented by the postal sector
and the fourth digit of the postal code). The number of neighborhoods in each market
varies from 12 to 38. Table Al in Appendix 1 describes the sample sizes at the block,
neighborhood and market level in more detail.

Neighborhood attributes

The neighborhood attributes include ethnic proportions (of the stock of public hous-
ing residents in a neighborhood), school quality, access to public transportation, the
average age of HDB blocks in a neighborhood and the average number of rooms in HDB
neighborhoods.

To calculate ethnic proportions, 1 hand matched more than 500,000 names to eth-
nicities. The 2005 phonebook was published on April 1st 2005, and includes a total of
795,208 phone listings. I matched names to ethnicities for 589,760 HDB listings (there
is a variable in the phonebook that indicates which address is an HDB address). House-
holds can request for phone and address records to be unlisted at a charge of $20 per
annum plus a onc-time administrative fee of $20. The sample size of the phonebook
suggests that a majority of Singapore residents did not opt to be unlisted. The ethnic
proportions calculated using the phonebook data are also similar to the national ethnic
proportions, suggesting that the choice to list in the phonebook did not differ by ethnic
groups.

Of the 589,760 HDB phone listings. 1 was able to match 588.550 names to ethnic-
itics (a 99.8% match) using differences in the structure of Chinese, Malay and Indian
names. For example, most Chinese names only have two or three words; Malay names
are primarily Muslim names since 99% of Malays in Singapore are Muslims (Singapore
Department of Statistics, 2000); Indian names are matched according to popular first
and last names. Nevertheless, 1,210 names remain unmatched. Three listings were firms
and 1,207 listings had names that only included initials or first names only or the ethnic-

ity was not identifiable (usually because I could not determine whether the names were

housing market would be a selected sample of households with weaker ethnic preferences.



Indian or Malay names).

The match between names and ethnicity is likely to be most accurate for Chinese
names because of distinet last names.’” On the other hand. Indian and Malay proportions
may be more prone to measurement error because many Indian Muslims adopt Arabic
names that are very similar to Malay names. Of the matched listings, 493,155 were
matched using popular first and last names. Many Chinese names were matched this
way. 84% of these 493,155 names were identified as Chinese names, 13% were Malay
names and 3% were Indian names. Another 95,395 names were matched individually.
50% of these names were identified as Chinese names, 17% as Malay names and 33% as
Indian names. Overall, the ethnic proportions calculated using the phonebook were 79%
Chinese, 13% Malay and 8% Indian, very close to the national proportions reported in
the 2000 Census (77% Chinese, 14% Malay and 8% Indian).

I collected the remaining neighborhood attributes from online street directories. the
HDB website and a non-public dataset purchased from HDB that is a census of all HDB
blocks in Singapore, This datasct includes the number of type 1 to type 8 units in cach
HDB block. See Appendix 1 for definitions of these variables and their sources.

Prices

I collected data on 23,199 transaction prices between April 2005 and March 2006.
These prices were uploaded every three months to the HDB website. 1 averaged these
monthly transaction prices to the neighborhood level. Unfortunately, I do not know the
ethnicity of the buyer and seller. I address this in Section 3.1.

Location choice data

A choice is a neighborhood. Ideally, I would have choice data of resale buyers and
their ethnicity. But, I do not. Instead, I match names in the 2005 phonebook to names
in the 2006 phonebook.'® Each phonebook includes six-digit postal codes that uniquely
identify an HDB block. T am not able to identify addresses within an HDB block. The
first two digits of the postal code identifies the postal sector. The postal sector together
with the fourth digit of the postal code identifies the HDB neighborhood.

I define stayers as houscholds living in the same postal codces in 2005 and 2006. Movers

are households who changed their postal code from 2005 to 2006. Entrants are phonebook

1"Even Chinese Muslims would tend to keep their Chinese last names.

"¥Phonebooks are published every April Ist. So, comparing 2005 and 2006 phonebooks would cover
most households who changed phone listings between April Ist, 2005 and March 31st, 2006. But,
households have to update their contact information within a month of moving. So, this comparison
may include households who moved less than a month before April 1st, 2005 and only updated their
phone listing after April 1st, 2005. It may also exclude some households who moved in March, 2006 but
did not update their phone listings by March 31st, 2006.



listings that only appeared in the 2006 phonebook.' I need to calculate shares for each
of the 170 HDB neighborhoods that appear on the Ethnic Integration Policy website.
I focus on collecting neighborhood choice data for the sample of 584,483 phone listings
residing in these neighborhoods by the publication date of the 2006 phonebook. Using
names and postal codes, | was able to identify 524,538 stayers, 20,646 movers and 39,299
entrants.

I use the neighborhood choice data of movers to proxy for the choice data of resale
buyers. I was able to identify the ethnicity of 20.572 movers. [ did not use the location
choice of entrants because the large number of entrants relative to the number of resale
transactions suggest that many entrants may not be resale buyers and I have no way
to determine which entrant is a buyer. Most probably. these entrants’ listings were
not identified in the 2005 phonebook because they changed the spelling of their names.
The correlation between the number of movers who moved to an HDB neighborhood
and the number of entrants in a neighborhood is 0.93 and the correlation between the
number of movers in a neighborhood and the number of resale transactions is 0.88. Thesc
high correlations suggest that neighborhoods that attract more movers also tend to be

neighborhoods that attract more entrants and buyers,?

“In doing so, I am basically matching names in 2005 to names in 2006, by postal codes. About 8.5%
of the data had instances of households sharing the same name residing in the same postal code. Since
names are used to define ethnicities, listings with the same names also have the same ethnicities. So, I
did not have to worry about the ethnicity, but I had to determine which of the duplicate names were
stayers, movers and entrants. As an example, suppose there were two listings (both with the name
John Doe) living in postal code 123123 in 2005. In 2006, there were three listings (all with the name
John Doe) living in three different HDB postal codes and they appear in the phonebook in the following
order: John Doe-123123, John Doc-456456 and John Doc-789789 respectively. There is one stayer in
postal code 123123 (there is the possibility that both John Doc’s living in 123123 moved to postal codes
456456 and 789789 in 2006 and the John Doe in 123123 in 2006 is an entrant, but T assume that a John
Doe moving out and another John Doe moving in is unlikely compared to the possibility that one of
the John Doe’s was a stayer). Now that I have determined that one of the John Doe’s is a stayer, 1
need to know which of the John Doe’s in 456456 or 789789 is the mover and which is the entrant. To
do this, I assume that the order in the phonebook is preserved across years. Each phone listing includes
an id (essentially a unique number affiliated with each phone listing). If there were multiple John Doe's
living in the same postal code in 2005 and 2006, I assume that the order of the names (and the order of
their id’s) is preserved in 2005 and 2006. I checked this assumption by looking at stayers. There were
153,450 cases of stayers sharing the same name and postal code. | compared the id of these stayers in
2005 and 2006 and checked that the order of their id's are preserved from 2005 to 2006. I sorted these
phone listings in increasing order using their id’s in 2005, then cheeked that the id’s in 2006 arc also
in increasing order for a large majority of the cases (this is true for all but 29 listings). Back to the
example, since an entrant is a new listing, it would be added after the first two listings. So, John Doe in
456456 is the mover who moved from 123123 and John Doe in 789789 is the new listing (the entrant).
This is how I classified stayers, movers and entrants for the 8.5% of data with multiple names in the
same postal codes.

2The number of movers is different from the number of resale transactions for a variety of reasons
that could lead to more or fewer movers, compared to resale buyers in the sample period. First, some of
the entrants could be resale buyers but I do not know which entrants are buyers. Second, some buyers



I summarize location choices using ethnic shares for each of the 170 HDB neighbor-
hoods. For example, the denominator for the Chinese share for neighborhood | is the
number of Chinese residents who lived in HDB neighborhoods, according to addresses in
the 2005 phonebook. The numerator counts the number of Chinese movers who moved
into neighborhood j , according to their addresses in the 2006 phonebook.

Note that ethnic proportions describe the ethnic distribution of the stock of residents
while ethnic shares depend on the flow of movers. In my analysis, I use ethnic shares
as a proxy for aggregate location choice probabilities (dependent variable) and ethnic
proportions as a ncighborhood attribute (explanatory variable). In the data, the flow of
movers is small enough that the ethnic proportion of the stock of residents is essentially
constant within a year.

Quota dummies

I also collected data on whether an HDB block was quota-constrained each month,
between March 2005 and April 2006. This data was updated every month on the HDB
website. The website only indicates whether an HDB block is constrained but does not
specify whether it is because the block or neighborhood quota limit was constrained in
that month. If all blocks in a neighborhood are constrained, I know the neighborhood
limit is binding.

Early ethnic seftlements

I use data on early 19th century ethnic settlements in Singapore to instrument for
ethnic proportions. Lieutenant Philip Jackson was appointed to create an urban plan for
Singapore, then a British colony. Figure 2 shows the map of carly 19th century Singapore
according to the Jackson Plan (Crawfurd, 1828). Four scparate residential arcas were
designated for the Chinese, Malays, Indians and Kuropeans. The Malay and Furopean
towns were to the east of the Singapore River while the Chinese and Indian areas were
to the west of the river.

Table 3 lists the summary statistics of the full dataset. There are 170 neighborhoods.

The ethnic shares are very low (the means for all groups are below 0.5%) indicating

in the resale market may have been excluded because they chose to not list in the phonebook or they
moved within HDB blocks. Third, some movers may not be resale buyers because they are renters (2%
of the HDI3 market) or they inherited their unit. Finally, there could be a time difference between the
recording of a resale transaction on the IIDB website and the recording of a phone listing. As mentioned
in Footnote 18, comparing the 2005 and 2006 phonebooks would cover most houscholds who changed
phone listings between April 1st, 2005 and March 31st, 2006 (including some who moved slightly before
April 1st, 2005 and excluding some who moved close to March 31st, 2006). I use resale transactions
data for the months of April 2005 to March 2006 (the dates most likely to match the publication of
the 2005 and 2006 phonebooks). However, some resale buyers who bought in the later months of the
sample period may not have moved yet (they may want to renovate their new unit) and some movers
who moved in the beginning of the sample period may have bought their units before April 2005.



that the flow of movers is very low. The Chinese quotas bind for almost one-fifth of
the sample, the Malay quotas bind for one-tenth of the sample and the Indian quotas
bind for a quarter of the sample. Tables A2 to A3 in Appendix 1 include more summary

statistics of the data.

3.1 Estimating ethnic-specific prices

Ideally, if I had information on how much Chinese, Malay and Indian buyers paid for
their units respectively, 1 could test for evidence of price dispersion. In particular, if
Chinese buyers paid different prices than non-Chinese buyers for the same neighborhood,
this would suggest heterogeneous taste for Chinese neighbors and/or Chinese amenities.
For the structural estimation later, T need data on the average Chinese-, Malay- and
Indian-price for a neighborhood.

Unfortunately, I do not have data on buyer cthnicity. For an apartment block, I know
the prices paid for the sold units from the transactions dataset and [ know the ethnicity
of the movers from the phonebook data, but I cannot match the prices to the movers
within a block. However, at the block level, T can calculate the average price using the
transactions data and the likelihood that the buyer is Chinese, Malay and Indian using
the phonebook data.

To estimate the average Chinese-, Malay- and Indian-price for a neighborhood, 1
assume that ch =RX)+ TIF1 ie. the average Chinese price for neighborhood j is the
average price for neighborhood | (as a function of attributes, X ) and the Chinese-specific
deviation from the average price. I use two steps to estimate these two components.

First, 1 use transactions level data from the HDB website to estimate the following

equation for each neighborhood j 2

Pitit = XytYj + Cy T + My + 15T + Te + Ty (1)

where Pjyy is the price for transaction i in block b in neighborhood j in month t,
Xt includes the a constant that is neighborhood-specific, the age of block b, dummies
indicating whether the Chinese, Malay and | ndian quotas are binding for block bin month
t, and dummies that indicate if the transaction involved a type 3, type 4, type 5, type
6 or type 7 unit,?? Cy is calculated as the number of Chinese movers for block b in

211 could also have aggregated the data to the neighborhood level and estimated a conditional expec-
tation function for prices for all neighborhoods, P(X) instead of Pj(X). To allow more flexibility in
the price function (so that age could affect prices differently in different neighborhoods, for example) I
estimated a separate regression for each neighborhood using variation between blocks in a neighborhood.

22Gince there are very few type 1 units and very few type 8 units in the transactions data, T combined



neighborhood j. divided by the number of resale transactions for block b in the sample
period. Likewise for My and |y. The omitted group counts the difference between
the number of transactions and the total number of movers with identified ethnicity.
This difference could arise because T could not identify the ethnicity of some movers, or
because movers are not resale buyers (see Footnote 20). Including this omitted group
allows for the possibility that the ethnic distribution of buyers could be different from
the ethnic distribution of movers and acts as a control for blocks where this measurement
error is likely to be large.??

Once | have estimated the coefficients in (1), I then calculate the average attributes
for neighborhood j ()?J ), averaged over all transacted and untransacted units (here, I use
the data from the HDB Census). To recover the average Chinese price for neighborhood
i, F’}C = X_JVJ + T?JC + 11—2 + Tt, where T?]C is the estimated Chinese-specific deviation in
price. I repeat the same for Malay and Indian prices. These are the prices I use for the
structural estimation. The standard errors will be adjusted to account for the prediction
CITOr.

[ included all units in the second step because [ want to calculate what the average
price would be for an average unit in neighborhood j. In the structural model, all ob-
servable attributes are assumed to be exogenous, except ethnic proportions and prices.
Therefore, the average age. for example, is averaged over all HDB units in a neighbor-
hood. not just transacted units. This is why the price calculation in the second step
includes attributes for all units.?* Using attributes for transacted units in the first step
and attributes for all units in the second step allows for the possibility that transacted
units arc sclected and the average transaction price may not reflect the price of the av-
erage unit. Suppose older units are less expensive and are less likely to transact in a
neighborhood, then, the price for an average unit in that neighborhood should be lower
than the average transaction price in that neighborhood because the average unit is older

than the average transacted unit.

types 1 and 2 into one category (the omitted category) and I combined types 7 and 8 into one category.
Z3Consider a simple case with two groups only: Chinese and non-Chinese. One possible concern arises
if there were more Chinese movers identified in expensive blocks than there were Chinese buyers. Then,
measurement error in the Chinese ratio is positively correlated with the dependant variable, leading to
an overestimate of TC (the estimate picks up positive correlation between the Chinese ratio and prices
and also between the measurement error and prices).
241 wish to thank a referee for making this suggestion.



4 Price Effects close to the Quota Limits

I present a descriptive analysis of the behavior of prices above and below the quota in
the spirit of the “regression kink design” (Card et al., 2009). The strategy is to identify
kinks in the outcome variable that coincide with kinks in the policy rule 2

I test whether there is a jump in the probability that the quota binds at the block
quota limit. To do this, I regress the monthly quota status from the HDB website on a
dummy that is 1 if ethnic proportions are above the block quota limit (mcasured using the
phonebook data) while controlling for fourth order polynomials of ethnic proportions.
Standard errors are clustered at the block level. Figure 3a summarizes the effect of being
in a block with 87% or more Chinese on the probability that the Chinese quota binds in a
month. Figures 3b and 3¢ measure the same effect for Malay and Indian block quotas,?®

There is a statistically significantly positive discontinuity in the probability that the
quota binds, right at the policy thresholds associated with the Chinese. Malay and Indian
quotas. The magnitudes of the jumps are 23%, 12% and 10% for the Chinese, Malay
and Indian quotas (all significant at the 1% level). The probability that the quota binds
is greater than 0 below the quota limits and less than 1 above the quota limits due to
two reasons, First, there is time series variation because the quota data from the HDB
website (vertical axis) is monthly and the phonebook data (horizontal axis) is annual.
Conditional on the ethnic proportions from the phonebook data, whether a quota is
binding or not can change from month to month. Secondly, there is measurement error
in the matching of names to ethnicitics, as discussed in the data section. The noise
introduced by the measurement error would bias against finding discontinuities unless
the measurement error is correlated with the quota status (non-classical measurement
error), which seems unlikely.

I proceed in two steps: First, I test whether there is price dispersion using observed
prices close to the quota limit. Second, I test whether the quota had price diserimination

cffects (ie. whether prices differed by buyer ethnicity for constrained neighborhoods).*”

#8ee Guryan (2003): Nielsen et al. (2009); Simonsen et al. (2009) for examples of non-parametric
identification of outcomes using kinked policy rules. See Footnote 6 for comparisons to regression
discontinuity design.

2 Figures 3b and 3¢ show a kink in the predicted probability around 50% above the Malay quota limit
(25%) and the Indian quota limit (13%) because there are too few blocks with more than 75% Malays
and more than 63% Indians, given that Malays and Indians are only 14% and 8% of the population.

27The focus of this section is to demonstrate the impact of the quota on prices because this is an
important assumption for the structural estimation. In a separate paper, I analyze the effect of the
quota on outcomes other than price Wong (2012).



4.1 Is there a discontinuity in observed prices?

I begin with a transaction level analysis that compares transactions for units that are

constrained and unconstrained:

INPisw = a+ yQCy-1x+ f (percentCrix) + Einjtk (2)
INPititw = a+ yQCptqx + f (percentCrix) + Bk + Tt + W + €tk (3)

where In Py is the log of the price of unit i in block b, neighborhood j, town k and
month t; QCyi-1x is a dummy for whether the Chinese block or neighborhood quotas
are binding in the previous month,® f (percentCyk) arc polynomials of the percent of
Chinese in a block (calculated from the phonebook), centered around the block quota
limit; B represents other observable attributes of the block (age of block b and age?,
share of units of block b that is of each of the eight HDB types (type 1 is omitted)); T
and uk are month and HDB town fixed effects.

The coefficient of interest is ¥, which summarizes the price effects. 1 estimate these
cquations for units that arc 10% above and below the Chinese quota limits and I repeat
the analysis for the Malay and Indian quotas. For each ethnic quota, I estimate the
Tegressions controlling for fourth order polynomials of ethnic proportions.? In Table 4,
columns 1 and 2 report estimates for equations 1 and 2 for the Chinese quota, columns
3 to 4 report estimates for the Malay quota and columns 5 and 6 report estimates for
the Indian quota. Standard errors are clustered at the HDB block level.

If sellers could arbitrage perfectly, we should expect no price effects. However, 1
find robust and statistically significant evidence of discontinuities in prices, ranging from
magnitudes of 3% to 8%.%"

28Fach resale transaction begins with a resale application submitted to HDB for approval. The
application has to show that the buyers are citizens or permanent residents, and the transaction satisfies
the quota policy at the time of the application. Approval can take up to 2 months. 1 have maiched
transaction prices in a month to quota constraints in the past month, assuming that approval takes 1
month. The results are similar if T use a 2-month lag.

29T his table reports estimates using polynomials that are the same above and below the limits. The
Chinese quota and Malay quota estimates are robust to allowing the polynomials to differ (see Appendix
3). The estimates for the Indian quotas arc not significant with scparate polynomials, if standard errors
are clustered at the block level.

3The overall effect depends on the clasticities of demand for buyers of different ethnic groups (to
be estimated in the structural model) and also the shares of transactions involving buyers of different
ethnic groups. A price discrimination model with two types of buyers, Chinese and non-Chinese, with
different location preferences (the Chinese prefer to live in Chinese neighborhoods), will show that prices
paid by non-Chinese buyers are likely to be weakly lower and prices paid by Chinese buyers are likely
to be weakly higher than unconstrained units. A majority of the transactions will likely involve Chinese
buyers, so that the overall price effect is likely to be heavily weighted towards a positive sign. This is
because (a) non-Chinese buyers are likely to buy from non-Chinese sellers since Chinese sellers who can



4.2 Do estimated prices differ across ethnic groups?

Next, T test whether the quotas had any price discrimination effects. For example,
whether the prices paid by Chinese and non-Chinese buyers differed for Chinese-constrained
neighborhoods. This neighborhood-by-ethnic group variation in prices is important for
identification of the location choice model in Section 5.

For unconstrained units, profit-maximizing sellers would sell to the top bidder. For
constrained units, the price effects depend on how willingness-to-pay (WTP) differs by
ethnic groups. If Chinese and non-Chinese buyers had similar WTP, then, there would
be no price discrimination effects because non-Chinese sellers who cannot sell Chinese-
constrained units to Chinese buyers would just sell the units to non-Chinese buyers who
have similar WTP. Similarly, if non-Chinese buyers were willing to pay more than Chinese
buyers, there would not be any price discrimination effects because the transaction that
the quota bans does not include the buyer with the higher WTP. With or without the
quotas, non-Chinese sellers would sell to non-Chinese buyers because they have the higher
WTP.

Therefore, we only see price discrimination effects if non-Chinese buyers are willing-
to-pay less than Chinese buyers for Chinese-constrained units. In this case, non-Chinese
sellers would have to lower the price of Chinese-constrained units to attract non-Chinese
buyers. Comparing constrained and unconstrained neighborhoods, prices for Chinese
constrained neighborhoods should be lower as the share of non-Chinese buyers increase,
To test the predictions above, I averaged transaction level prices to the neighborhood-
month level and interacted the neighborhood quota dummy with ethnic buyer weights
that were calculated using the phonebook data. These regressions can be viewed as
heterogeneous treatment effect regressions to the average treatment effect regressions in
(2) and (3).

InP;; = ynQCj_, + @nQCj_; +wM; + @.nQCji_, = wlj + f (percentC;) + X;B + Tt + g1 (4)

where InPjt is the log of average transaction prices for neighborhood j in month t,
nNQGC;t- 1 is 1 if the Chinese neighborhood quota was binding for neighborhood j in month
t—1, wM; and wl; are the shares of movers for neighborhood j who are Malay and Indian

rom the phoneboo ata cen i) 1s a fourth order polynomial of the Chinese
from the phonebook data), f (percentC;) is a fourth order polynomial of the Chi

3

sell to both Chinese and non-Chinese buyers will prefer to sell to Chinese buyers who are willing to
pay more and (b) at most 13% of the sellers are non-Chinese because the Chinese block quota limit is
87% Chinese. A similar argument for Malay and Indian quotas suggest that the overall price effects are
heavily weighted towards a negative sign because the Malay and Indian quota limits are only 25% and
13%. These predictions are consistent with the signs of the discontinuities in Table 4.



neighborhood proportion centered around the neighborhood quota limit (84% Chinese),
X includes observed neighborhood attributes (the average number of rooms, school qual-
ity. average age of buildings, averageage’, distance to the closest subway) and T, are
month fixed effects. Standard errors are clustered at the neighborhood level. If WTP
of non-Chinese buyers are lower than W'TP of Chinese buyers for Chinese-constrained
neighborhoods, we would expect @1 and @7 to be negative. This would suggest that the
treatment effect of the quota results in lower prices for Chinese-constrained units as the
share of non-Chinese buyers increases.

There are 2 drawbacks to this price dispersion test that would bias against finding
price discrimination effects. First. there is less statistical power because these regressions
are at the neighborhood-month level, instead of the transaction level. Second, there is
measurement error in the buyer weights. Table 5 reports the results for Chinese, Malay
and Indian quotas. The key coefficients are the interaction terms between the quota
dummy and the buyer weights.

I find evidence of price discrimination effects that are consistent with the ethnic-based
restrictions in Table 2. Column 1 shows that as the Malay buyer weight increases by 1
percentage point. prices for Chinese-constrained neighborhoods fall by 1.53% (p-value:
5%). The coefficient for the share of Indian buyers is also negative but not significant.
Both coefficients (@ and @,) are jointly significant (p-value: 1%). For Malay quotas,
prices fall by 0.662% as the Chinese weight increases by 1 percentage point (p-value: 5%)
but prices increase as the Indian weight increases (not significant). For Indian quotas,
prices fall as Malay and Chinese buyer weights increase but the coeflicients are only
jointly significant (p-value: 1%). In summary, 5 out of the 6 ¢'s arc estimated to be
negative.

These suggestive findings of price discrimination indicate that WTP differs by ethnic
groups. Otherwise, there would be no price differences to arbitrage in the first place.
These WTP's can differ because taste for observed neighborhood attributes or taste for
unobserved amenities differ by ethnicity. In the next section, I build a location choice
model that allows for cthnic-based taste for obscrved and unobscrved amenitics. In

Section 6., I use instrumental variables to identify these preferences separately.

5 Utility Specification

To recover ethnic preferences away from the discontinuity, I begin with a random co-

efficients utility model of households choosing neighborhoods. There are m = 1,...,.M

markets, each with i® = 1,...,18 buyers of ethnic group G and j = 1,...,J, neighbor-



hoods. The indirect utility of buyer i of group G from choosing neighborhood j in market

m is
U\?m = Xij BIG + U\GPJGm + tij + Eﬁm (5)
for j = 1,...,dm ¥Ym, where X iGm is a K-dimensional (row) vector of observed neigh-

borhood attributes that could include attributes common to all ethnicities as well as

ethnicity-specific attributes; Pij is the price that a buyer of group G pays for a unit

in neighborhood j in market m; ﬁij is taste for the unobserved neighborhood amenity
‘(ism
preferences for a consumer of group G. The observed neighborhood attributes include a
constant, the average age of HDB buildings, school quality, the average number of rooms
of HDB units in the neighborhood, distance to the closest subway station, percent own

ethnic neighbor, the squared term and ethnic prices.

that is specific to ethnic group G and €7, represents mean-zero, idiosyncratic individual

I make two departures from standard residential location choice models: 1 allow
taste for unobserved neighborhood amenities to vary by ethnic groups, ﬁjG‘ The §JG'S
aggregate up the impact of all attributes that are unobserved by the econometrician but
affect group G’s utility for neighborhood j. This specification allows the interpretation
of taste for Chinese neighbors, ﬁgercemcmnese, that is separate from taste for unobserved

31 Examples

amenities that are preferred by Chinese (I call these Chinese amenities).
of ethnic-specific amenities include kindergartens that teach ethnic languages, places of
worship, community centers that set aside space for cultural events and activities for
different ethnic groups (eg. Tai-chi for Chinese, sepak takraw courts for Malays and
cricket fields for Indians).*® In a qualitative study of ethnic relations, Singaporcans
indicated a preference for “special ethnic community places™, suggesting that ethnic
based taste for amenities could be important (Lai, 1995).

Secondly. notice also that prices vary across ethnic groups, Pi?n’ because of the price
discrimination mechanism of the quotas. To keep the notation simple, I will drop the
subscript for markets from here on. An important assumption that is common in this

literature is that utility from neighborhood j only depends on the attributes of that

31The identification strategy in this paper relics on the assumption that the taste for unobserved
neighborhood amenities is additive and separable, a standard assumption in many random coefficient
discrete choice models. Without additivity and separability, I will not be able to identify ethnic prefer-
ences. For example, if amenities and ethnic proportions enter the utility function jointly (eg. Chinese
derive utility from living with Chinese neighbors and living near Chinese amenities, but they also derive
more utility from Chinese amenities if there are more Chinese neighbors), the coefficient on the percent
of Chinese in a neighborhood will be over-estimated under the assumption of an additive and separable
utility function.

32Gepak takraw is a traditional Malay sport.



neighborhood alone.®® This will be useful for identification, as I discuss helow.

One limitation of the specification is the absence of income in the model because 1
do not observe income. Admittedly, this is unrealistic for housing. An immediate impli-
cation is the inability to distinguish between income- and ethnic-segregation. I return
to this in the results section. Second, like most papers in the literature on residential
segregation. this location choice model is static. A dynamic discrete choice model would
require panel data. Third, this model estimates taste for own-ethnic-neighbors (Chi-
nese taste for Chinese versus non-Chinese), and cannot distinguish the Chinese taste for
Malays versus the Chinese taste for Indians. 1 chose this specification because [ only have
a small number of neighborhoods. In most theoretical models (including Schelling’s),
taste for own-ethnic-neighbors is thought to be the main driver of residential segrega-
tion.

We can write the consumers’ taste parameters as a mean and a consumer-specific
deviation from the mean

G G

oo ©
where v§, ..., v$ is individual i‘s unobserved taste for attribute k, drawn independently
(for cach individual in cach group) from a standard normal distribution and v$ is drawn
from a log normal distribution because I assume that all individuals do not like to pay
high prices.  is a (K+1)x(K+1)-dimensional scaling matrix whose diagonal clements

are denoted by 0 and gp .3
The specification is completed with the introduction of an 'outside good' (j = 0)

— buyers may choose not to move to another HDB neighborhood. The utility of the

outside good is normalized to 0.

UG = & + €5 (7)

Substituting (6) into (9) and grouping consumer-specific terms together, we can write
the utility specification parsimoniously as Ui? = qG + p,-(]-; which is simply group G's mean

utility for neighborhood j

#¥This excludes utility specifications where buyers have higher utility if their neighborhood is better
than adjacent neighborhoods. -

#Note that I assume mean preferences vary by ethnicity but the standard deviation does not ( is
not indexed by G). This is mostly a limitation of my data. Identification of Z relies on variation in
choice sets across markets (Petrin, 2002; Berry et al., 2004). While the choice sets differ substantially
because the neighborhood attributes differ a lot, I only have 7 markets in my data.
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qG - XJGB_G + EGPJG + E"G (8)

and a consumer-specific deviation from that mean

G- G 6 GG 4 £6
b= OXkVik T OpPvip + g (9)
K

M

The parameter, O, is commonly thought of as a measure of heterogeneity. As 0 in-
creases, neighborhoods that are similar in attributes become better substitutes because
individuals with strong tastes for attribute K (Ujx) will tend to substitute towards prod-
ucts that arc abundant in attribute k (X;x). Assuming unobserved heterogencity avoids
the independence of irrelevant alternatives (ILA) problem.

Market-level aggregates are obtained by aggregating over the distribution of consumer
characteristics. Let the group G share for neighborhood | be

s°(8°,6% %%, PO, Fe) = Fuc (du®), (10)

AP (8% 8% x8.PC)
where A]-G is the set of consumers of group G who choose neighborhood |, 8° is the set
of taste parameters. {BG, a®, o}, and F ;e denotes the population distribution function

for ethnic group G.

AP(D°,6% x5, P = p®:UP> ULV el (11)

Following the literature, I assume that the idiosyneratic errors, Ei(js: have an indepen-
dently and identically distributed Type I extreme value distribution. Integrating out
the €5 yields the Logit form for the model’s choice probabilitics. Letting si? denote the
probability that individual i of group G chooses neighborhood |,

. exp(d° + k oxGVE + 0pPOVR)
s = — - 12
14 VDexp(qCE+ ) ox 3V + opPEVR) (12)
i

6 Empirical framework

6.1 Estimation

Step 1: Contraction mapping (§° = s~ (s %))
I estimate 3 separate discrete choice models, one for each ethnic group. I use a
contraction mapping algorithm from Berry (1994) to find the value of 8% that makes
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the observed ethnic shares match the shares predicted by the model.* The ethnic share
is calculated as the number of group G movers who chose to move to neighborhood j
divided by the number of group G houscholds in a market.?® I simulate the integral in
(10) by drawing 10,000 vZ’s independently for each group G. The assumption in these
models is that market shares are a non-linear and non-separable function of €2, but mean
utility, by assumption, is a linear combination of observed and unobserved neighborhood
attributes. Using the contraction mapping algorithm, one can recover mean utility as
the dependent variable of a linear equation, §° = X jG [.;G + CI_GPJG + EIG that can then be

cstimated using instrumental variables.

Step 2. Method of simulated moments

Once 8° has been recovered from step 1, T can construct the moments. T recover
the taste parameters, 8¢, by matching aggregate moments predicted from the model
to sample moments using the Method of Simulated Moments. The following moment

condition is assumed to hold at the true parameter value. 6 € RP:

Elg(8&)] = E[5(&) Z]= 0 (13)

where g(s) € R' with | > p is a vector of moment functions that specifies that the
structural error, §, is uncorrelated with the instruments, denoted by an JxL matrix, Z.
T stack the moments for the estimation of each ethnic group and define 8 = {6°, M
@' }. The simulated moments are
= =

a0® = Z¥(®) (14)
j=1 j=1

) J -
The MSM estimator, 6, minimizes a weighted quadratic form in ¢ (6). I use a

2-step estimator where the second step uses estimates from the first step to calculate
a consistent weighting matrix. The standard errors are calculated based on Pakes and
Pollard (1989) and McFadden (1989). To account for the error from using estimated
prices instead of observed prices, T follow Newey (1984). Since the price and taste
parameters are estimated sequentially, the first set of moments come from the OLS price
regressions in Section 3.1, with parameters T and y (the first moments are g'(T,y,T)).

Then, using these parameters as inputs; the second moments are the moments in (14),
3To find the fixed point, I use a tolerance of 1 x ™14,

% There are two neighborhoods with no Chinese movers, eleven with no Malay movers, four with
no Indian movers. I assign these shares to be the minimum share for each ethnic group, because the
estimation involves the inversion of ethnic shares and shares of neighborhoods that are zero are not
invertible.
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g?(e, 71, ¢, ).

6.2 Identification

In this section, I discuss identification of the mean utility equation. qG = XiGEG +
EGPJ-G + §jG‘ Identification of the unobserved heterogeneity parameters (0 in {j;) follows
Berry et al. (1995). T first explain how 1 use variation from the quotas to identify a
location choice model where taste for neighborhood amenities vary across ethnic groups
(§JG)‘ Then, I describe the instruments used for endogenous variables in the mean utility
equation: ethnic proportions and ethnic prices. Table 6 summarizes the identification
assumptions behind 6.2.1 to 6.2.3. My examples describe identification for Chinese pref-
erences, assuming only 2 types of households (Chinese and non-Chinese). Identification

for Malays and Indians are similar.

6.2.1 Identification of §°

The model in this paper improves over existing location choice models by allowing the
mean utility for neighborhood amenities to vary by ethnic group. Consider a specification

commonly assumed in existing location choice models:?"

u; =9+ XJkdicBEC + 0 (15)
k

§=xp+aP +§ (16)

where § is the mean utility for neighborhood j, averaged over Chinese and non-
Chinese, § is the average houschold’s taste for unobscrved amenity, dic is 1 if houschold i
is Chinese, BSC is the Chinese-specific marginal utility for attribute K where B° indicates
observed heterogeneity, and the other variables and parameters are defined in the same
way as Section b.

In this model, the Chinese marginal utility for peroent Chinese, is Eperwmc + 2Epe,wmcw*
per centC + BRrcentc + 2Bgercentcsq* PErcentC. the mean marginal utility plus the Chinese-
specific deviation from the mean. The endogencity problem of unobserved amenities, is
circumvented here because §; is “absorbed” in §. Once § is recovered using contraction
mapping, the ethnic preferences of the average household can be identified separately

from § using instrumental variables.

37 Assume no unobserved heterogeneity. The intuition is the same with unobserved heterogeneity.
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Importantly. the observed heterogeneity terms, B,%?mmc: are identified by matching
the covariances between percentC and Chinese location choices without instrumental
variahles,

The problem arises if Chinese taste for unobserved amenities is different from non-
Chinese taste for unobserved amenities. Intuitively, this model only allows taste for
observed neighborhood attributes (eg, percentC) to differ by ethnic groups. This will be
the only margin in the model that explains variation in the location choices of Chinese
movers. If neighborhood j has abundant Chinese amenities, the sample moment would
indicate a high probability that Chinese choose neighborhood j. To mateh the sample
moment, BF?E?DQMC will have to be higher because in the model, Chinese movers dispro-
portionately choose one neighborhood over another only because observed neighborhood
attributes that are preferred by Chinese are abundant in that neighborhood. This results
in an upward bias in Bl%:cemc‘ A model that allows taste for unobserved amenities to
differ by ethnic groups would address this problem.

However, estimating such a model is challenging because it is under-identified in
many empirical settings. The standard empirical strategy in discrete choice models is to
correlate neighborhood choices with ethnic proportions. Without the quotas, the model
would be under-identified because the neighborhood choices of Chinese movers would be
positively correlated with both the Chinese taste for observed Chinese proportions and
the Chinese taste for unobserved amenities.

The ethnic quotas are useful in this setting because of the price diserimination mecha-
nism of the policy. Even after accounting for Chinese buyers’ taste for Chinese neighbors,
if Chinese have a stronger taste for unobserved amenitics in that neighborhood, then,
they would be willing to pay more than non-Chinese buyers for units in that same neigh-
borhood. Therefore, a model with both Chinese taste for own-ethnic-neighbors and
Chinese taste for unobserved amenities is no longer under-identified because there are
now two sources of neighborhood-by-ethnic group variation: (i) the location choices of
Chinese movers; (ii) the within neighborhood variation between Chinese and non-Chinese

prices.

6.2.2 Instruments for ethnic proportions

Note that quota dummies are not instruments for ethnic proportions for three reasons.

First, the policy rule is itself a function of ethnic proportions. Second, within the time

#Formally, ﬁp?e(r:cenlc is identified by matching the covariance between percentC and the difference
Number of Chinese movers choosing neighborhood |
Number of movers choosing neighborhood |

dicted by the model. This follows equation (8) in Berry et al. (2004).

between the sample moment, , and the same moment pre-
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period in my data (April 2005-March 2006), the policy does not generate exogenous
variation in neighborhood ethnic proportions because the flows of movers are too small
to change the ethnic make up of residents in a neighborhood. Third, the probability that
a quota binds is likely to be correlated with amenities. The Chinese quota is likely to
bind in neighborhoods with high Chinese proportions or neighborhoods with amenities
that the Chinese prefer.

Historical ethnic settlements

My first instrument for ethnic proportions relies on historical ethnic settlements cre-
ated in the 19th century by the Jackson Plan (described in Scetion 3). The instrument is
a dummy variable that is 1 for units to the east of the early Malay settlements. The idea
is that the Jackson Plan’s assignment of Malay settlements to the east of the Singapore
River (as shown in Figure 2) increased the likelihood that subsequent Malay neighbor-
hoods would be developed on the east side of the Singapore River. But, conditional on
the percent of Malays in the neighborhood, this assignment is assumed to be independent
of Malay amenitics.

Figure 4a shows the spatial distribution of quota-constrained necighborhoods in 2005.
Malay-constrained neighborhoods are primarily in the east while the Chinese and the
Indian neighborhoods are not. This suggests that Malay neighborhoods indeed expanded
to the east of the river after the Malay settlements were assigned there.

Figure 4b is a plot of the spatial distribution of mosques, an important Malay amenity
because 99% of Malays are Muslims. While the exclusion restriction is not testable and
it is impossible to collect data for all necighborhood amenities, it is rcassuring that the
spatial distribution of mosques docs not scem to be concentrated to the cast of carly

Malay settlements.

Attributes of nearby neighborhoods

My second set of instruments for ethnic proportions (the sum of exogenous attributes
of nearby neighborhoods) follows Bayer and Timmins (2007) and Bayer et al. (2004). Ac-
cording to them, attributes of surrounding neighborhoods could be correlated with ethnic
proportions if Chinese, Malays and Indians have different preferences for neighborhood
attributes, perhaps due to demographics such as family sizes.® The thought experiment
involves two similar neighborhoods: A and (little) a. Neighborhood A has big units
relative to the surrounding neighborhoods and neighborhood (little) @ has small units

relative to the surrounding neighborhoods. Malays would tend to sort into neighborhood

MForty-three percent of Malay households have five or more family members while only 24% and 26%
of Chinese and Indian households have such large families (Housing Development Board, 2000).
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A since Malays prefer big units to the surrounding small units. In this manner, unit sizes
of surrounding neighborhoods are correlated with Malay neighborhood proportions.
The exclusion restriction for this instrument is satisfied because of the separability
assumed in the functional form of the mean utility equation: qG = XJG[;G + EGPI-G + §jG
implies that X;o;j are not correlated with ng by assumption. This exclusion restriction
is commonly assumed in similar demand estimation models for products such as cars
or cereal (Berry et al. (1995, 2004); Petrin (2002) and Nevo (2001)). To adapt it to
location choice models, where the taste for adjacent neighborhoods could be non-zero
because of spatial correlation, I follow Bayer et al. (2004) and usc exogenous attributes
of neighborhoods (everything except price and ethnic proportions) that are nearby, but

not adjacent (ie. within 1-3km rtings, 3-5km rings and 5-Tkm rings).1°

6.2.3 Instruments for ethnic prices

Predicted quota probabilities

I use the quota policy to create new instruments for ethnic-specific prices that are
conditionally mean independent from amenities. The ideal experiment is to randomly
assign quota probabilities (the probability of whether a quota binds or not) across blocks
and neighborhoods so that the quotas bind for exogenous reasons. The price discrim-
ination mechanism of the policy will then generate plausibly exogenous variation in
ethnic-specific prices.

In practice, quotas bind for both endogenous and exogenous reasons because ethnic
proportions could be highly correlated with ethnic tastes for neighborhood amenities. 1
approximate the ideal experiment by using the instruments for ethnic proportions above
and the step function of the policy rule to isolate plausibly exogenous variation in ethnic
proportions, and hence, variation in quota probabilities. These quota probabilities are
estimated using three steps.

First, I estimate the block and neighborhood level ethnic proportions using the in-

struments for ethnic proportions described above:

peroentGy = Zyy+ Uy (17)
percentG; = Zjp+ v (18)

where G=(C)hinese, (M)alays and (I)ndians, b indexes blocks and ] indexes neighbor-

407 chose 1km as the cutoff because the neighborhoods would be far enough. I chose 2km widths so
that all neighborhoods would have at least one nearby neighborhood within the ring. One neighborhood,
Changi Village, is located at the Eastern tip of Singapore. There are no neighborhoods within 1-3km
of Changi Village. I assign values of the instruments to be zero for Changi Village.
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hoods. The variable, percentG is the percent of residents from group G, the instruments
are Z = [X® East X ®, where X ® is the set of exogenous attributes for neighborhood
j (everything in X except price and ethnic proportions), East is a dummy for whether
the neighborhood is to the east of the early Malay settlements, X e is the sum of ex-
ogenous attributes of nearby neighborhoods. For equation (17), Zg includes East, X e"n,
the average number of rooms in block b in neighborhood j, the average age of block b,
and other exogenous attributes in X ® at the neighborhood level (school quality and the
distance to public transportation).

In the sccond step, 1 use the predicted ethnic proportions in step one and the block and
neighborhood quota limits in Table 1 to determine whether a block and a neighborhood
are quota-constrained. That is, I define a block quota dummy that is 1 if the predicted
block level ethnic proportion is above the quota limit for blocks, QAGt,- = 1(paoénth O
block quota for group G), and similarly for the predicted neighborhood quota dummies
(QG)).

Finally, I calculate the probability that the quota is binding in a neighborhood using
the following cases: (i) the predicted probability that a quota is binding in neighborhood
j is 1 if the predicted neighborhood quota dummy (QAGJ- ) is 1; (ii) it is O if the predicted
neighborhood quota dummy is 0 and the predicted block quota dummies (Qéu) for
all blocks in neighborhood j are 0; (iii) otherwise, the predicted quota probability is
the average of the predicted block quota dummies, averaged using all blocks in the
neighborhood.

These three steps are designed to isolate plausibly exogenous variation in the proba-
bility that a quota binds because the ethnic proportions in step 1 were predicted using
exogenous variables only and the quota limits used in step 2 are not correlated with
amenity levels in a neighborhood (the quota limits were set in 1989 to be the same for
all blocks and neighborhoods). Therefore. the exclusion restriction is satisfied.

What remains to be shown is that estimated quota probabilities are correlated with
ethnic prices (the analog of a “first stage”). The concern is that these probabilities
were cstimated using other instruments, Z. Conditional on Z, the predicted quota
probabilities may not be correlated with prices if there is no variation in the predicted
probabilities, after controlling for Z (ie. there may not be a “first stage”). Here, the
step function of the policy rule introduces non-linearities that are useful. Essentially, the
first step of the prediction exercise estimates ethnic proportions as a linear combination
of the instruments, Z. However, the second step constructs the neighborhood and block
level quota dummies using the policy rule. Thus, the effect of the estimated quota

probabilitics is non-parametrically identified using the step function of the quota policy.
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As long as the instruments do not affect prices in the same way as the step function, the
estimated quota probabilities should have an effect on prices.

To test this, I estimate the following equations
Pr(QG)) = ¢:P¥(QG), +y (19)

Pr(QG)) = Zjy + PHQG)) + w (20)

That is, I regress the actual quota probabilities for Chinese; Malay and Indian quotas,
Pr(QG;j) . on the estimated quota probabilities PlthGj) . For example, Pr(QG;) is
the percent of blocks in neighborhood | where the Chinese quota is binding. Then, I
repeat the same regression. controlling for the instruments used to estimate the quota
probabilitics. If the estimated quota probabilities have power above and beyond the ex-
ogenous attributes used to estimate them, then, the coefficient, @2, should be significant.
This regression is akin to the first stage of an instrumental variables regression except
that the dependent variable is not ethnic-specific prices (what the quotas instrument
for), because I do not observe ethnic-specific prices.

Panel A of Table 7 reports the results for equations (19) and (20). The first 3 columns
show that the estimated quota probabilities are all positive and significantly correlated
with actual quota probabilitics even though the actual quota probabilitics were not used
to estimate the quota probabilities. Importantly, the next 3 columns show that after
controlling for the instruments used to estimate these quota probabilities, the estimated
Chinese and Malay quota probabilities still have a significant effect, indicating that the
step function is powerful. But not so for the Indian quotas perhaps because of a lack of
statistical power (see Footnote 29).

To test that the effect is non-parametrically identified from discontinuities due to the
quota limits, Pancls B and C repeat the same regressions using placcbo limits that are
expected to have no effect on prices. I use placebo limits that are 3% above and below
the actual limits. Column 4 in Panels B and C show that the coefficient on the predicted
Chinese quota probabilities is no longer significant, after controlling for the instruments
for ethnic proportions. This shows that the estimates for Chinese quotas in Panel A are
identified from the policy rule.

However. the placebo test suffers from several drawbacks in the context of Malay
and Indian quotas. First, placebo limits that are too far above the actual limits are
not useful. For example, few neighborhoods were estimated to be Malay-constrained
and all Indian quota probabilities were estimated to be zero when the placebo limit was

3% above the actual limit. Accordingly, Panel B shows that predicted Malay quota
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probabilities are negative and significant using placebo limits that are 3% above the
actual limits. The corresponding coefficient for Indian quotas was dropped because
there was no variation in the predicted Indian quota probabilitics. But, the coefficient
on Indian quota probabilities, predicted using placebo limits 3% below actual limits. is
not significant after controlling for instruments (Panel C. column 6).

Secondly, placebo limits that are slightly below the actual limit could result in esti-
mated quota probabilities that are still highly correlated with actual quota probabilities
because of measurement error. This issue is more severe for Indians and Malays because
their names are harder to match, as discussed in Section 3. This could be why the Malay
quota probabilities constructed using placebo limits that are 3% below actual limits are
still positive and significant (Panel C, column 5). For these reasons, these placebo tests
are most valid for the Chinese quotas.

Predicted prices

My second instrument for prices is the same as the price instruments used in Bayer
ct al. (2007). The first step uses the price instruments (Z and the predicted quota
probabilities) to estimate a demand model with exogenous variation only (no social
interactions). This location choice model without social interactions has a unique equi-
librium price. The second step uses contraction mapping to solve for the unique vector
of equilibrium prices that clears the market. This price vector is a weighted average of
the price instruments where the method relies on equilibrium conditions of the model to

approximate the optimal weights for the instruments.

7 Results

Table 8 reports estimates for the taste parameters.*!

The top panel reports results on
the mecan of the taste paramecters. f and @, and the bottom panel reports results on
the heterogeneity term, 0. The first column refers to estimates that are restricted to be
common across groups and the next three columns are preference parameters for Chinese,
Malays and Indians. Because of the small number of neighborhoods, 1 constrained all

coefficients other than ethnic preferences to be common across ethnic groups.*?

#1See Appendix 3 for the Logit model estimated with OLS and IV where the dependent variables
are the log of the ethnic shares, In(sJGm) subtracted by the log of the ethnic share for the outside good,
In 55, and G indexes for the (C)hinese, the (M)alays and the (I)ndians. I estimated all three Logit
models simultancously. The Logit model is nice because it is computationally simple and transparent. 1
use the Logit model to estimate models with linear, quadratic and cubic ethnic preferences. The results
show non-linearities in ethnic preferences (columns 6-8 and 10-12).

2For example, this restricts Chinese, Malays and Indians to share the same tastes for school quality.
Suppose tastes for school quality differed by ethnicity. In this case, the reported coefficient in Table 8
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In general. the signs of most of the coeflicients are as expected: Higher school quality,
shorter distances to the subway, newer HDB blocks and lower prices are all associated
with higher mean utility. The magnitudes of the mean utility parameters (E) also appear
to be consistent with each other. For example, living 1 ki further away from the subway
station is as bad as living in a neighborhood where the average building is 7.3 years older
(both are worth 0.3 utils less). The average distance to the subway station is 0.8k, the
average age of a building in a neighborhood is 19 years. The coefficient on the number
of rooms is negative but insignificant. The coefficient on price is the right sign but
insignificant. The heterogencity terms are insignificant.

Moving on to ethnic preferences, the estimates show that all groups want to live with
at least some members of their own ethnic group. The sign on the linear term is always
positive for all ethnic groups. This is consistent with the findings in the literature
on residential segregation. The sign on the quadratic term. however, is negative and
significant for Chinese and Indians and negative and insignificant for Malays. Table
9 calculates marginal rates of substitution (MRS) between percent own ethnic group,
and other attributes using the marginal utility estimates from Table 8. T quantify ethnic
preferences in terms of the average distance to the subway station (in kilometers) instead
of dollars because the coefficient on price is insignificant. Because of the quadratic
term on ethnic proportions, the MRS depends on ethnic proportions in. I report MRS
for ethnic proportions at the 1st percentile. the mean and the 99th percentile in the
neighborhood data.

All groups have inverted U-shaped preferences, so that once a necighborhood has
cnough own-cthnic-neighbors, the average houschold prefers a new neighbor from another
ethnic group. Table 9 shows that a Malay living in a neighborhood with 13% Malays (the
mean) is willing to move to a neighborhood where the average distance to the subway
station is 0.33km (1km = 0.62 miles) farther. Indians have very steep indifference curves.
An Indian living in a neighborhood with 2% Indians (the 1st percentile) is willing to move
1.43km farther from the subway station to live in a neighborhood with 1% more Indians.
By contrast, an Indian living in a neighborhood with 21% Indians (the 99th percentile)
needs to move 1.24km closer.

Malays have the highest turning points relative to the mean Malay proportion. The
turning point for Malays (28%) is 2.2 standard deviations above the average proportion
of Malays (13%). The turning point for Indians (12%) is 1.4 standard deviations above

the mean (8%) and the turning point for the Chinese (52%) is 3.9 standard deviations

is the average of the Chinese, Malay and Indian marginal utility for school quality.
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below the mean (79%).%3

The quadratic functional form allows us to test the location of the turning points
where the sign of the marginal utilitics change. Using the Delta Method, I tested whether
the first order conditions with respect to ethnic proportions are significantly different
from zero at these turning points. The t-statistics were less than 0.5 for all three groups,
indicating that the inverted-U shape is significant but the location of the turning point
is not precisely estimated. I am able to reject with 95% confidence that the turning
point is greater than 59% for the Chinese and greater than 17% for Indians.** For the
Malays, even at 98% Malays, I cannot reject that the first order condition is significantly
different from 0 (the t-statistic is 1.33). This difference in the shape of ethnic preferences
between Malays and non-Malays is consistent with findings from qualitative surveys in
Singapore. In a survey of 191 movers, Sin (2002) finds that “Malays are different from
the other ethnic groups in terms of their tendency to move (to locations) where they are
overrepresented” (p. 1360).

Finding tastes for diversity and differences in the shapes of cthnic preferences is con-
sistent with previous rescarch using data on racial attitudes from the General Social
Survey (Aldrich et al., 2005). In a survey of ethnic relations in Singapore, Lai (1995)
found that households did express a preference for “multi-ethnic living”. But most es-
timates of ethnic preferences have not demonstrated such non-monotinicity in ethnic
preferences because they have focused on linear models.

These findings also provide evidence against ethnic discrimination, a common con-
founder in the literature on residential segregation. If non-Malays discriminated against
Malays and forced them into Malay enclaves, then Malay enclaves could still arise even
if Malays did not have preferences for other Malay neighbors. Therefore, ethnic dis-
crimination would upward bias the estimates on Malay preferences. IHowever, ethnic
discrimination is not consistent with the inverted-U shaped preferences for Chinese and
Indians. If the Chinese and Indians discriminated against Malays, then, the marginal
utilities for own-ethnic-neighbors would be unlikely to be negative.

Another common confounder is income scgregation. In Singapore, income varies
across ethnic groups with the Chinese having the highest median income and the Malays
having the lowest median income. Even if there was no taste for own-ethnic-neighbors,

neighborhoods that are segregated by ethnic groups could still arise due to income seg-

4 Although 52% represents the Chinese proportion that yields the maximum utility for the average
Chinese, all neighborhoods do not converge towards 52% because the Chinese make up 77% of the
population and there is variation in other neighborhood attributes that are desired by the Chinese.

M At proportions above 59% Chinese and 17% Indians respectively, the first order conditions are
statistically significantly different from 0.
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regation and the correlation between income and ethnicities. Not controlling for income
could lead to an upward bias of cthnic preferences. However, the results suggest that
income segregation cannot be the only mechanism. In a model with income segregation
only, everyone would prefer to live with the Chinese. In Indian- and Malay-constrained
neighborhoods, the Malay and Indian prices should not be higher than the Chinese prices
because all groups would want to live with the Chinese instead of their own ethnic groups
(see Table 5).

The findings for the Chinese are striking because the turning point (52%) is far below
the Chinese neighborhood limit (84% Chinese) and yet the Chinese neighborhood quotas
are binding for 9% of the neighborhoods in an average month.*® This suggests that the
Chinese neighborhood quotas are likely to be binding because the Chinese have strong
preferences for amenities in those neighborhoods. This is also consistent with stylized
findings borne out in the data. First, the predicted Chinese taste for neighborhood
amenities (F:C) is positively correlated with the Chinese mover shares (0.6). In addition,
in Section 4.2, we saw that price differences for Chinese-constrained units suggested that
the Chinese price was greater than the non-Chinese price. These price differences can
cither arise due to higher WTP for Chinese proportions or stronger Chinese taste for
unobserved amenities. But, the inverted U-shaped Chinese preferences suggest that the
average Chinese buyer prefers a lower Chinese proportion on the margin (see Table 9).
This suggest that the price differences are due to an abundance of Chinese amenities in
these neighborhoods.

These findings have implications for policy. In an interview in January 1989 (just
before the policy was implemented), the Minister of National Development acknowledged
the possibility of using amenities to attract particular ethnic groups. But, the ethnic
quotas were preferred because of the concern that using such measures to achieve deseg-
regation was deemed to be “risky” and “slow” (The Straits Times, 1989). The preference
estimates in this paper are important inputs for cost benefit analysis that could inform
such policy considerations. One drawback of using amenities to encourage desegrega-
tion is fixed costs (it is costly to build a Chinese temple in a neighborhood with very
few Chinese). However, this is less of an issue because the Chinese are the majority in

Singapore.,

4B For Indians, the turning point (12%) is 2% above the Indian neighborhood limit (10%).
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7.1 First Best Simulations

In this section, T use the preference estimates in Table 8 to find the first best allocation
of ethnic groups.*® The social planner’s problem is to find the allocation of ethnic
groups to neighborhoods that will maximize a social welfare function. In a decentralized
cquilibrium, the first best allocation may not be achieved because of externalities. An
individual chooses the neighborhood that maximizes his own utility, without internalizing
the effect of his choice on the ethnic proportions in the neighborhood.

To find the first best allocation, I first assume a utilitarian social welfare function.
Then, T make use of the preference estimates from Table 8 and also the average group G
household’s taste for unobserved neighborhood amenities (E:G). While the ethnic propor-
tions for neighborhood j change, I assume that the average group G houschold'’s taste for
unobserved amenities in that neighborhood stay fixed throughout the welfare simulation.
Therefore, the exercise is to search for the allocation of ethnic groups that would max-
imize a utilitarian social welfare function, holding fixed the average household’s taste
for amenities at current levels. This is the benchmark T use to compare against the
allocation of ethnic groups in my sample. See Appendix 2 for the simulation details.

Figure 5 plots the density of percent Chinese, per cent M alay and per cent | ndian now
(dashed line) and under first best (solid line). The first best has more neighborhoods
with low Chinese and Indian proportions but there are also some neighborhoods that
are above the neighborhood quota limits (given the distribution of taste for unobserved
amenities). [ find that 32%, 35% and 31% of the neighborhoods in my sample have
Chinese, Malay and Indian proportions that are within one standard deviation of the
first best allocation. The standard deviations are 7% for Chinese and Malay proportions
and 3% for Indian proportions.

One would like to know whether the equilibrium after the quota was implemented was
closer to the first best than the equilibrium allocation before the quota. Unfortunately, 1
do not have data on pre-quota ethnic proportions. Lum and Tien (2003) report the ethnic
proportions for three towns in Singapore, in 1988 (before the policy) and 1998 (after the
policy).*” Table 10 compares these ethnic proportions to the first best allocation.

Before the policy, Redhill was known as a Chinese town, Bedok was a Malay town

and Yishun was an Indian town. In 1988, the Malay and Indian proportions in Bedok

16T theory, we could use preference estimates to estimate compensating and equivalent variation for
the policy. However, this excrcise is outside the scope of this paper because models with social interac-
tions inherently have multiple equilibria and there is no consensus on how to select the counterfactual
equilibrium. See Bajari et al. (2007) for an example of how to estimate structural models with multiple
equilibria.

4TTowns are bigger than neighborhoods. An average town has 22,000 households.
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and Yishun were almost 3.5 times the first best levels. Ten years after the introduction
of the quotas, they were within two and four percentage points of the first best Malay
and Indian proportions. The magnitude of this “improvement” towards the first best
allocation is likely to be an upper bound because these towns were very segregated to
begin with. The ethnic proportions of these neighborhoods would likely have reverted
towards the mean (and hence closer towards the first best), even without the quotas.

For Redhill, the Chinese proportion did not change much. This could be bhecause
of fixed amenities in Redhill that are preferred by the Chinese discourage Chinese from
moving out (Redhill has a high density of Chinese temples and it is also close to Chi-
natown). Also, the Chinese are such a majority (77%) that it is hard to lower Chinese
neighborhood proportions by much despite the Chinese having inverted U-shaped pref-
erences.

There are four caveats to the discussion above. First, the taste estimation assumes
that all ethnic groups share a common taste for attributes such as school quality. Second,
this welfare exercise assumes that other attributes, such as school quality, do not change
in response to the change in ethnic proportions. If Chinese proportions are positively
correlated with school quality (perhaps due to the higher income and higher education of
Chinese parents), creating more diverse neighborhoods by lowering Chinese proportions
improves welfare because the Chinese like diversity but this could lower the school quality
in those neighborhoods. Hence, the welfare effects would be ambiguous if neighborhood
attributes and amenities were allowed to evolve as ethnic proportions changed. Third,
it is possible for multiple allocations to maximize social welfare. This would depend on
how differentiated the neighborhoods are. In the extreme, if two neighborhoods, A and
B, are identical, a welfare-maximizing allocation with 70% Chinese in neighborhood A
and 30% Chinese in neighborhood B implies that an allocation with 70% Chinese in
neighborhood B and 30% Chinese in neighborhood A would also be welfare-maximizing.
It is less likely in this case because most of the neighborhood attributes are continuous,
making it unlikely that two neighborhoods are identical (for example. the éj S are unique
for cach neighborhood). Fourth, the welfare simulation assumes that preferences arce
invariant across time and markets. As ethnic proportions evolve, ethnic preferences
could also change. If the quotas caused preferences to change, the first best would also

change.*®

48If preferences were more skewed towards segregation pre-policy, it is possible that the first best
allocation before the policy would also have more segregated neighborhoods.
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8 Conclusion and Future Research

This paper estimates preferences for own-ethnic-group neighbors and uses the preference
estimates to benchmark the welfare consequences of the ethnic quota policy in Singapore
relative to the first best. To my knowledge, this is the first set of welfare results on
desegregation policies even though these policies affect the location choices of many
houscholds around the world.

This paper develops and estimates a discrete choice model of residential location
choices where the taste for unobserved neighborhood amenities is allowed to vary by
ethnic groups, an improvement over existing location choice models. T first document
evidence of price dispersion due to the quota policy and use the model to inform how this
policy variation can be used to identify ethnic preferences. I operationalize the reduced
form identification approach in the structural model using the step function of the policy
rule. Importantly. 1 show that the step function of the policy non-parametrically iden-
tifies ethnic-specific prices, an important source of variation in a location choice model
with ethnic-specific taste for amenities.

I find that all groups have strong preferences to live with at least some other members
of their ethnic group. Preferences are inverted U-shaped so that after a neighborhood has
enough own-ethnic-neighbors, households would rather add a new neighbor from other
groups. To my knowledge. this represents the first estimate of non-monotonic ethnic
preferences, made possible due to the rich variation from the phonebook data. Welfare
simulations show that a Malay and an Indian town became desegregated after the quota
was imposed, with the post-quota ethnic proportions within four percentage points of
the first best allocation. The lack of change of Chinese proportions for the Chinese town
could be due to Chinese taste for fixed amenities.

In ongoing work, I explore the use of hedonic versus discrete choice models to estimate
preferences (7). Future work will also include the use of ethnic preference estimates to
simulate counterfactuals. The challenge in performing such welfare calculations is that
sorting models with social interactions typically have multiple equilibria. These findings

will be important complements to the first best simulations in this paper.
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TABLE 1. NEIGHBORHOOD AND BLocK LEVEL ETHNIC QUOTAS

Ethinicity Neighborhood Quotas Block Quotas National Population (2000)
Chinese 84% 87% 7%

Malay 22% 25% 14%

Indian 10% 13% 8%

SOURCE. | 12000 Census (Singstat), Lum and Tan (2003)

TABLE 2: RELATIONSHIP BETWEEN QUOTAS AND THE ETHNICITY OF BUYERSAND SELLERS

Binding Quota Buyer Ethnicity Seller Ethnicity Status
Chinese Chinese Chinese Allowed
Non-Chinese Non-Chinese Allowed
Non-Chinese Chinese Allowed
Chinese Non-Chinese Not Allowed
Malay Malay Malay Allowed
Non-Maay Non-Malay Allowed
Non-Maay Maay Allowed
Malay Non-Malay Not Allowed
Indian Indian Indian Allowed
Non-Indian Non-Indian Allowed
Non-Indian Indian Allowed
Indian Non-Indian Not Allowed
TABLE 3. SUMMARY STATISTICSFT
Variables N Mean Std. Dev. Description
Chinese Share 170 012% 0.14% MNumber of Chinese moverswho chose a neighborhood/Number of Chinese residentsin a market
Malay Share 170 014% 0.15% MNumber of Malay movers who chose a neighborhood/Number of Malay residents in a market
Indian Share 170 0.38% 0.38% Mumber of Indian movers who chose a neighborhood/Mumber of Indian residents in a market
Price 170 23890 50,755 Average transaction pricein a neighborhood (Singapore dollars)
Chinese Neighborhood Quota 170 009 0.27 Percent of months Chinese ne ghborhood quota binds
Malay Nelghborhood Quota 170 006 017 Percent of months Ma ay neighborhood quota binds
Indian Neghborhood Quota 170 017 0.32 Percent of months Indian neighborhood quota binds
Chinese Block Quota 1M o uas Percent of months and blocks Chinese block quota binds
Malay Block Quota 10 00s 0.1 Percent of months and blocks Malay block quota binds
Indian Block Quota 0 008 013 Percent of months and blocks Indian block quota binds
Percent Chinese 170 79% 7% Percent of Chinese in a neighborhood
Percent Malay 170 13% % Percent of Malaysin a neighborhood
Percent Indian 170 8% 3% Percent of Indians in a neighborhood
Schoal Quality 170 315 41 Total number of awards received by schoolsin a nelghborhood
Subway 170 080 0.55 Distance to the closest subway station
Rooms 170 412 063 Number of rooms in aunit in the nel ghborhood
Age 170 1922 n Average age of HDB blocks in the neighborhood

Note. 11School quality is measured as the total number of awards given to primary, secondary schools and tertiary institutions by the Singapore

Ministry of Education
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TABLE 4: EFFECTS ON OBSERVED PRICES CLOSE TO THE QUOTA LIMITS

DEPENDENT VARIABLES
Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price
4] (2) 3) 4 (5) (6)
Chinese Quota 0.0819*** 0.0507***
(0.0165) (0.0060)
Malay Quota -0.0387*** -0.0267***
(0.0116) (0.0042)
Indian Quota -0.0283*** -0.0330***
(0.0108) (0.0039)
Polynomial Quartic Quartic Quartic Quertic Quartic Quartic
Controls N Y N Y N Y
Month N Y N Y N Y
Town N Y N Y N Y
Obs 19314 19314 14862 14862 32114 32114
R-squared 0.0102 0.7977 0.0041 0.7472 0.0092 0.7751

Nore. [ The regression equation is NPy = fi+ AC,.q, +f(percentCe) + 45y where InPiyuis the log of the price of uniti in block b, neighborhood j, month t and town k; QCq..4x is adummy that is 1 when the
Chinese (C) quotas are binding, f(percentCy;y) is a flexible polynomial, centered at the block quota limit. The controls are other observable characteristics of the block (age of block b and its squared, share of units
of block b that 1s of each of the 7 HDB types (type 1 is omitted)), month and town fixed effects. | repeat the exercise for the Malay quotas (columns 3-4) and Indian quotas (columns 5-6); Standard errors are in
parentheses and are clustered at the block level.

*p<010
** p<005
*rp<00
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TABLE 5: EFFECTS ON OBSERVED PRICES, CONTROLLING FOR ETHNIC BUYER WEIGHTS

DEPENDENT VARIABLES
LnPrice LnPrice LnPrice
(1) (2) (3)
Chinese Neighborhood Quota Status 0.1849***
(0.0572)
Chinese Neighborhood Quota Status x Malay Weights -1.56308**
(0.5909)
Chinese Neighborhood Quota Status x Indian Weights -0.12
(0.3591)
Malay Neighborhood Quota Status 0.26
(0.2093)
Malay Neighborhood Quota Status x Chinese Weights -0.6624**
(0.2752)
Malay Neighborhood Quota Status x Indian Weights 0.11
(0.4098)
Indian Neighborhood Quota Status 0.1373*
(0.0767)
Indian Neighborhood Quota Status x Malay Weights -0.8740***
(0.2300)
Indian Neighborhood Quota Status x Chinese Weights -0.03
(0.1260)
Controls Y Y Y
Month Y Y Y
Observations 2043 1393 2741
R-squared 0.3931 0.5266 0.3768

Note. 1 Each column is a regression restricted to 10% above and below the Chinese, Malay and Indian neighborhood quota limits. The
regression equation is InPy= fANQC4 + £5 nQCs * WM+ 72nQC,., * wl; + f(percentGy) + Xjb +{, + 4, where InP,is the log of the average
price of neighborhood j in month t; nQC;;.; is a dummy that is 1 when the neighborhood Chinese quota is binding in month t-1, wiM; and wi; are
the share of movers in naghborhood | who are Maay and Indian, f(percentG;) is a flexible polynomial, centered at the neighborhood quota limit
and ¢, is month fixed effects. Controls (%) include a constant, the average age of HDB blocks in a neighborhood, its squared, average number of
rooms, school quality and distance to the closest subway station. Standard errors are in parentheses, clustered at the neighborhood level.

*p<010
** p=<005
***p=0M
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TABLE 6. SUMMARY OF IDENTIFICATION STRATEGY

|dentification Strategy

Assumptions and Thought Experiments

1. Omitted variables that are ethnic-specific ( ]" instead of ')

Model neighborhood-by-ethnic-group fixed effects
instead of neighborhood fixed effects (7;© instead of

{) using the price discrimination mechanism (the
quotas generate price variation across ethnic groups
by preventing arbitrage).

Consider 2 observationally identical neighborhoods, A and B. Prices depend on observed and unobserved
neighborhood attributes. If the Chinese buyers paid a higher price than the non-Chinese buyers for aunit in
neighborhood A compared to neighborhood B, since price is positively correlated with quality, this
observed variation in ethnic-specific prices has information on unobserved ethnic-specific neighborhood
quality.

2. Prices and ethnic proportions are correlated with unobserved ethnic-specific neighborhood quality

2a. Instruments for ethnic proportions:

Characteristics of nearby neighborhoods (1-3km, 3-
5km and 5-7km rings).

Historical ethnic settlements.

| Consider 2 observationaly identica neighborhoods, A and (little) a. Neighborhood A has large units

relative to the surrounding neighborhoods; Neighborhood (little) a has small units relative to the
surrounding neighborhoods. Malays prefer bigger units because they have bigger families. So, they will
sort differentially into neighborhood A. Therefore, unit size of surrounding neighborhoodsis correlated
with ethnic proportions.

Figure 4 shows that the |ocation of existing Maay neighborhoods is correlated with the location of early-
19th century Malay settlements. This assumes that Malay seftlements were exogenously assigned to the
east of the Singapore River in the early 19" century.

2b. Instruments for ethnic-specific prices, P,G:
Characteristics of nearby neighborhoods (1-3km, 3-
5km, 5-7kmrings).

Estimated quota dummy.

First, use characteristics of nearby neighborhoods to predict demand using only exogenous variation in the
data Then, use the model to solve for a vector of prices that clearsthe market (Bayer, Ferreira and
McMillan, 2007).

Quotas are correlated with ethnic prices through price discrimination . Use the instruments in 2ato predict
ethnic proportions. Let @ equa 1if the predicted ethnic proportion is above the quota limit. This assumes

that the price effect of all other neighborhood attributes is smooth a the quota limits and only the effect of
the quota is discontinuous at the limits.
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TABLE 7: REGRESSION OF ACTUAL QUOTA PROBABILITIES ON ESTIMATED QUOTA PROBABILITIES

DEPENDENT VARIAELES
Actua Actua Actua Actual Actua Actua
Chinese Malay Indian Chinese Malay Indian
Quota Quota Quota Quota Quota Quota
Probability Probability  Probability+ Probability Probability  Probability+
(N (2) (3 (4) (5) (8
Panel A: Placebo = Actual Limits
Estimated Chinese Quota
Probability 0.4891*** 0.1341*
(0.0564) (0.0771)
Estimated Maay Quota
Probability 0.6685*** 0.3929***
(0.0952) (0.0965)
Estimated Indian Quota
Probability 0.3473*** -0.13
(0.0891) (0.1073)
Controls N N N Y Y Y
Fstat 75.09 49.29 15.20 8.00 5.47 2.41
Obs 170 170 170 170 170 170
R-squared 0.31 0.23 0.08 0.49 0.39 0.22
Panel B: Placebo = Actual Limits + 3%
Estimated Chinese Quota
Probability 0.3817*** -0.11
(0.0994) (0.0863)
Estimated Malay Quota
Probability 0.15 -0.4090*
(0.2417) (0.2248)
Estimated Indian Quota
Probability dropped Dropped
Controls N N N Y Y Y
Fstat 14.74 0.39 7.84 4.37 245
Obs 170 170 170 170 170 170
R-squared 0.08 0.00 ‘ 0.48 0.34 0.22
Panel C: Placebo = Actual Limits - 3%
Estimated Chinese Quota
Probability 0.3867*** 0.089
(0.0356) (0.0746)
Estimated Maay Quota
Probability 0.4410*** 0.2773**
(0.0458) (0.0583)
Estimated Indian Quota
Probability 0.2856*** 0.11
(0.0281) (0.0869)
Controls N N N Y Y Y
Fstat 117.99 92.54 103.31 7.83 597 2.41
Obs 170 170 170 170 170 170
R-squared 0.41 0.35 0.38 0.48 0.42 0.22

Norte. | |Panel A uses the actual limits to estimale quota probabilities. Pands B and C use placebo limits that are 3% above and bdow the actual
limits. Each panel has 6 columns. The first three do not control for instruments used to estimate the quota probabilities; the following three
columns do. Theinsiruments are the sum of school awards, the distance to the closest subway station, the average age of buildings, the average
number of rooms for nearby neighborhoods within 1-3km, 3-5km and within 5-7km, as well as a dummy for being in the east of the early Malay

settlements, Standard errors are in parentheses. * p < 0.10,

** <005,

#**p<001

" Thereis no F-stat and R-squared for Panel B because the variable, Estimated Indian Quota Probability, was zero for all neighborhoods,
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TABLE 8: RaNDOM COEFFICIENTS LOGIT WITH QUADRATIC ETHNIC PREFERENCES

Common Taste Chinese Taste  Maay Taste Indian Taste
Parameters Parameters Parameters Parameters
Variables Uniits (1) 2 ) )
Means:
Constant -6.81%**
(2.29)
School Quality .1 awards 1.18%**
(0.12)
Distance to Subway 1km -0.36"**
(0.11)
Average No. of Rooms 0.1 rooms -4.16
(4.58)
Average Age of Buildings 0.01 years -4.94***
(1.01)
Percent Own Ethninc Group 10.26*** 2227 6.17**
(2.04) (6.95) (0.94)
(Percent Own Ethnic Group)2 -9.95%** -3.99 -2.63*
(2.16) (2.50) (0.60)
Price S$million -0.70
(14.18)
Heterogeneity:
Constant 095
(2.59)
Average No. of Rooms 0.1 rooms -0.57
(10.52)
Price SHmillion 0.08
(7.35)

NoTe 1 Variables are scaled so that the mean isbetween 0.1 and 1. The units arein the table For example, the coefficient on School Quality in the quadratic
model implies that an increasein 10 awards is associated with an increase of 1.18 utils. For the ethnic proportions, percent Chinese, percent Chinese® and
percent Malay are not scaled; percent Malay® and percent Indian are multiplied by 10; percent Indian” is multiplied by 100. The instruments are the sum of
school awards, the distance to the closest subway station, the average age of buildings, the average number of rooms for nearby neighborhoods within 1-3km,
3-5km and within 5-7km, a dummy for being in the east of the early Malay settlements, the estimated quota dummies and the vector of Chinese, Malay and

Indian price vectors summar zed by the demand model. Standard errors are in parentheses.

*p<0.10
**p<005
*** <001,
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TABLE 9: MRS EVALUATED AT VARIOUS ETHNIC PROPORTIONS IN THE SAMPLE

ETHNICITY
Chinese Malays Indians
Relevant statistics for ethnic proportions:
Mean of Percent Own Ethnic Group 79% 13% 8%
1st percentile of Percent Own Ethnic Group 63% 1% 2%
99th percentile of Percent Own Ethnic Group 98% 29% 21%
Standard Deviation of Percent Own Ethnic Group 7% 7% 3%
MRS relative to distance to subway (km), per 1% increase in
ethnic proportion:
MRS at mean of Percent Own Ethnic Group -0.15 0.33 0.59
MRS at 1st percentile of Percent Own Ethnic Group -0.06 0.60 1.43
MRS at 99th percentile of Percent Own Ethnic Group -0.26 -0.02 -1.24

NoTE. || This teble shows calculations of the MRS for ethnic preferences evaluated at different ethnic proportions. The top panel reports the mean, 1st percentile, 99th percentile and standard deviation for percent Chinese,
percent Malay and percent Indian. The bottom panels report the MRS's. The MRS's are reported in terms of the number of kilometers to the closest subway station per 1 percentage point increase in the percent of own ethnic
group neighbors (1km=0.62 miles). The MRS's are calculated as the marginal utility for a 1 percentage point increase in own ethnic group neighbors divided by the negative of the marginal utility for distance to the closest
subway station (2nd pandl). A positive MRS reflects preferences for a new neighbor from the own ethnic group. A negative MRS reflects preferences for a new neighbor from other ethnic groups. Since ethnic preferences are
quadratic, the MRS changes with ethnic proportions. | calculate the MRS at the mean, the 1st percentile and the 99th percentile. The average distance to the closest subway station is 0.8km.
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TaBLE 10: ETHNIC PROPORTIONS OF THREE T OWNS, BEFORE, AFTER THE QUOTA AND FIRST BESTFi

Before (1988) After (1998) First Best
Percent Chinese in Redhill 87% 84% 74%
Percent Malay in Bedok 59% 19% 17%
Percent Indian in Yishun 24% 11% 7%

SouRce. | Strats Times 7 January 1989, HDB profile of residents in HDB flats, 1998.
NoTE. | | Thistable reports ethnic proportions for atraditionally Chinese town (Redhill), Malay town (Bedok) and Indian town (Yishun). The three columns report ethnic proportions pre- and post-quota as well as the first best
obtained from simulations. A town is a duster of neighborhoods, with an average of 22,000 houssholds.
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Source. Google Maps
Fic. 1. CMap of HDB blocks and HDB neighborhoods. Each number in the miap correspondsto an HDB block. There are 4 HDB neighborhoods in this map. Neighborhood 1 comprises al HDB blocks between 100 and 199,

neighborhood 2 comprises al HDB blocks between 200 and 299, neighborhoods 4 and 5 are defined in a smilar manner.
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SoURCE: Crawford, 1828
Fic. 2 ["Map of ethnic settlements in early 19" century. The Malay settlements ("Arab Campong" and "Bugis Campong”) are in the south east corner of the map, just east of the European Town. The Chinese and Indian areas
areto the west of the Singapore River
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A Probebility that the Chinese Quota Binds
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Fic. 3 Testing for discontinuity in the probability that the quota binds Each panel in this figure 1s constructed by regressing Qi (a dummy for
whether the quota is binding for block b in month t) on adummy that is 1 when the ethnic proportions are above the block quota cutoff and 4th
order polynomials of ethnic proportions, centered around the quota cutoffs, then plotting the predicted probabilities. Repeat the exercise for the
Malay quotas and Indian quotas The dashed |ines represent 95% confidence intervals. Standard errors clustered al the block level. The
coefficient estimates are 23%, 12% and 10% for Chinese, Maay and Indian quotas,
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