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Abstract

We compare four traditional repeat sales indices to a recently developed autoregressive
index that makes use of the repeat sales methodology but incorporates single sales
and a location effect. Qualitative comparisons on statistical issues including the effect
of gap time on sales, use of hedonic information, and treatment of single and repeat
sales are addressed. Furthermore, predictive ability is used as a quantitative metric in
the analysis using data from home sales in 20 metropolitan areas in the United States.
The indices tend to track each other over time; however, the differences are substantial
enough to be of interest, and we find that the autoregressive index performs best
overall.

Housing is an important part of a nation’s economy and house price indices help us
understand how such markets operate by tracking changes over time. These indices
can be useful for a variety of purposes: as macroeconomic indicators, as input into
other indicators, by individuals looking to sell or purchase a home, or for appraising
homes.

We conduct a comparative analysis of the autoregressive index introduced by
Nagaraja, Brown, and Zhao (2011) with four traditional repeat sales indices: the
Bailey, Muth, and Nourse (1963) index, the original Case and Shiller (1987) method,
the Home Price Index produced by the Federal Housing Finance Agency, and the
S&P/Case-Shiller Home Price Index published by Standard and Poor’s. For
comparative purposes, we also include the median price index. We do not compare
results for hedonic indices or the hybrid index from Case and Quigley (1991) because,
other than location information, no hedonic information is available in our data.

We evaluate these five indices using a two-pronged approach: (1) analyzing the
components of each index along with the statistical structure and (2) comparing
estimates of individual house prices from each index. Using data from home sales for
20 cities in the United States, from 1985 to 2004, we find that the autoregressive
model produces the best predictions.

The second approach requires some justification. Generally, to determine how well a
model works for its prescribed purpose, we check with the ‘‘truth’’ either using real
data or through simulation. We cannot apply either of those techniques here. There is
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no true index and as each index is constructed under differing data-generating
processes, simulation is not an effective tool for comparison. A third option is to
examine predictions of individual house prices as a way to determine the efficacy of
an index. All of the indices studied here can be applied on a microeconomic level.
Therefore, individual price prediction is a practical way of evaluating an index. This
type of quantitative metric allows for comparisons on an objective, measurable scale.
We assert that methods used to generate better predictions involve higher quality
models and thus lead to more accurate indices. Therefore, prediction, combined with
qualitative comparisons, provides a more complete analysis of a housing index.

We begin with a literature review. We then describe the data and models and make
qualitative comparisons. Finally, we use the data to compare the indices and
predictions produced from each method. Finally, we close with concluding remarks.

LITERATURE REVIEW

A major hurdle in constructing house price indices is that homes are heterogeneous
goods. Furthermore, the market composition of homes sold changes throughout the
year causing even more difficulties. One way to control for differences in the quality
of housing stock over time is to use a hedonic index. Characteristics of a house such
as floor area or location are considered hedonic variables. Such indices, such as those
proposed in Yeats (1965) and Noland (1979), are constructed by regressing the
hedonic characteristics against sale prices. Pure hedonic models have been largely
abandoned in favor of alternative methods, primarily due to problems with the
availability, accuracy, and stability of relevant variables and the difficulty in describing
the model. Other proposed methods, such as repeat sales or spatial models, attempt
to circumvent such issues by using previous sale price and geography respectively as
surrogates for hedonic variables; however, Meese and Wallace (1997) still advocate
the use of hedonic models for constructing local indices.

Bailey, Muth, and Nourse (1963) introduced the landmark concept of repeat sales
analysis. Using this method, assuming a house undergoes no changes, to assess how
prices change over time, one need only look at the difference in sale prices of the
same house. This approach appears to resolve the issue of varying composition, which
mean and median indices suffer from, and it addresses the problem of hedonic models
not capturing all characteristics. Subsequent researchers have expanded this concept
by incorporating various additional features in an effort to improve index estimates.
The most significant and widely-used development was by Case and Shiller (1987,
1989) who argued that gap times between sales have an effect on sale price
differences. A minor modification of the Case and Shiller method is used to compute
the Conventional Mortgage Home Price Index released quarterly by Freddie Mac and
Fannie Mae. This set of indices covers numerous U.S. cities and regions.

There has been much criticism of repeat sales methods. A key objection is that repeat
sales methods exclude homes that sell only once within the time span of data
collection. Proponents of these methods claim that such exclusions are necessary to
obtain a ‘‘constant-quality’’ index. They argue that as newer homes tend to be of
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Exhibit 1

House and Sale Counts

City Sales Houses Single Sales Training Pairs Test Set

Ann Arbor, MI 68,684 48,522 32,458 10,431 9,731

Atlanta, GA 376,082 260,703 166,646 59,222 56,127

Chicago, IL 688,468 483,581 319,340 105,708 99,179

Columbia, SC 7,034 4,321 2,303 1,426 1,287

Columbus, OH 162,716 109,388 67,926 27,601 25,727

Kansas City, MO 123,441 90,504 62,489 16,705 16,232

Lexington, KY 38,534 26,630 16,891 6,075 5,829

Los Angeles, CA 543,071 395,061 272,258 75,660 72,350

Madison, WI 50,589 35,635 23,685 7,714 7,240

Memphis, TN 55,370 37,352 23,033 9,372 8,646

Minneapolis, MN 330,162 240,270 166,811 46,206 43,686

Orlando, FL 104,853 72,976 45,966 16,147 15,730

Philadelphia, PA 402,935 280,272 179,107 63,082 59,581

Phoenix, AZ 180,745 129,993 87,249 25,830 24,922

Pittsburgh, PA 104,544 73,871 48,618 15,891 14,782

Raleigh, NC 100,180 68,306 42,545 16,372 15,502

San Francisco, CA 73,598 59,416 46,959 7,111 7,071

Seattle, WA 253,227 182,770 124,672 35,971 34,486

Sioux Falls, SD 12,439 8,974 6,117 1,781 1,684

Stamford, CT 14,602 11,128 8,200 1,774 1,700

higher quality than old homes, the true effect of time is confounded with quality if
included (Case and Shiller, 1987). As a result, the indices are computed from a small
subset of all home sales. Consequently, they may be unrepresentative of the housing

market as a whole. We find that in our data, the sample size is reduced significantly

if only repeat sales homes are included: between 33% (Columbia, South Carolina)

and 64% (San Francisco, California) of the data are single sales homes (Exhibit 1).

This feature is also well recorded in the literature (Case, Pollakowski, and Wachter,

1991; Meese and Wallace, 1997). Furthermore, Clapp, Giaccotto, and Tirtiroglu (1991)

find that repeat sales homes are fundamentally different from single sales homes.

Therefore, Clapp and Giaccotto (1992) claim repeat sales indices may show changes

in repeat sales homes only and not the entire housing market. Englund, Quigley, and

Redfearn (1999) have similar reservations in their analysis of Swedish home sales.

Gatzlaff and Haurin (1997) also find that in an analysis of home sales in Dade County,

Florida, repeat sales indices, by virtue of being constructed from a subset of all sales,

suffer from sample selection bias. Despite these concerns, such procedures have been

widely adopted by the real estate sector. A number of agencies, including the Federal

Housing Finance Agency (Calhoun, 1996) and Standard and Poor’s (2009),
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constructed using Shiller’s (1991) paper on arithmetic indices, release indices based
on the repeat sales method.

A second issue is that all houses age and therefore it could be argued that no pair of
sales is of identical homes, tempering the constant-quality index argument. Case,
Pollakowski, and Wachter (1991) claim that because age increases over time, repeat
sales indices are biased because time effects are confounded with age effects.
Specifically, the general upward trend of the effect of time is countered by the negative
effect of age. Furthermore, the age effect is not accounted for in repeat sales indices,
as shown in Palmquist (1979). Palmquist (1982) suggests adding in a depreciation
factor to the repeat sales procedure to account for this; however, this factor must be
independently computed, adding complexity to the model. Goodman and Thibodeau
(1996) propose an iterative repeat-sales method that uses age in the model for
estimating the effect of gap time. Clapp and Giaccotto (1998b), Cannaday, Munneke,
and Yang (2005), and Chau, Wong, and Yiu (2005) propose models where age is
included in such a way as to avoid collinearity with the index component of repeat
sales methods. As year of construction is not available in our data, we are unable to
implement these methods for comparative purposes for any of the five indices.

Case and Quigley (1991) propose a hybrid index that incorporates hedonic variables
so that homes excluded in traditional repeat sales indices are not omitted. Clapp and
Giaccotto (1998a) construct a repeat sales method that incorporates assessed values
of homes as a hedonic variable in addition to actual sales. Gatzlaff and Ling (1994)
find that the assessed value method and repeat sales methods produce similar results.
Knight, Dombrow, and Sirmans (1995) propose a hybrid index that permits the
hedonic coefficients to vary over time. However, the data requirements for any of
these hybrid indices may make them impractical to implement on a broad scale.

The autoregressive index proposed by Nagaraja, Brown, and Zhao (2011) incorporates
additional data, specifically single sales and ZIP Code and, in this way, is similar to
hybrid indices. Where it differs is that only sale price and address are required to
deploy this index. The advantage of this, like all repeat sales price indices, is that the
autoregressive index can be used across broad geographies. House price indices are
estimated for the U.S. as a whole, by metropolitan area, as well as for sub-areas. As
a result, data must be both available and comparable across geographies, which is not
the case with the existing hedonic methods. However, the new autoregressive index,
including only location information, can be easily applied across a diverse set of
geographies. Furthermore, incorporating single sales enables the autoregressive
method to improve the precision of both model parameters and price predictions.

DATA

The available data contains sale prices for single-family homes sold between July
1985 and September 2004 in 20 metropolitan areas in the U.S. For each sale, the
following information is available: address, month and year of sale, and price. We
divide the sample period into three-month intervals so there are enough sales at each
period to compute a stable index. In total, there are 77 periods, or quarters. All sales
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in our data qualified for a conventional mortgage. Consequently, the data does not

include very expensive homes, homes bought at subprime rates, or those bought solely

with cash. While the data comprise a well-defined subset (and majority) of all home

sales, the omissions can introduce some sample selection bias into all of the methods

discussed in this paper.

Note that none of our analyses involve deleting repeat sales of significantly renovated

homes as recommended by Case and Shiller (1987, 1989) as we do not have indicators

for such events in our data set. Dropping such homes from the analysis could be

expected to improve the performance of all repeat sales type indices we discuss.

Summary counts of the number of sales and unique houses in the data are provided

in Exhibit 1.

We divide the data into training and test sets. Each model is applied to the training

data; the test data are used for our predictions. The test set contains the final sale of

homes, which sell three or more times in the sample period. In addition, for homes

that sell only twice in the sample period, the final sale is added to the test set with

probability 0.5. Roughly 15% of the observations are in the test set. The last two

columns of Exhibit 1 provide the size of the training and test sets. Given the size of

the data set, it is impractical to provide all the results in this paper. Therefore, we

only show results for a few cities that represent our typical findings.

We include single sales homes in the training data since they are used in estimating

the autoregressive model parameters. We do not include single sale houses in the test

set since none of the traditional repeat sales methods can be used to provide

predictions for the price of such homes. (The autoregressive method can be used to

predict single sales homes, albeit not very accurately since the prediction would be

based only on the weakly informative geographic indicator.)

MODEL DESCRIPTIONS

In this section, we outline the original repeat sales index proposed by Bailey, Muth,

and Nourse in 1963 (BMN) and two indices that are based on it: the original Case

and Shiller (C-S) index and the FHFA HPI index (FHFA). These three indices are

similar in and are all fit on the log price scale. Next, we describe Standard and Poor’s

Case-Shiller based index (S&P/C-S) index, which differs in that it is fit on the price

scale and is based on Shiller (1991). Finally, we end with a description of the

autoregressive (AR) index which, while it makes use of the repeat sales concept,

approaches index construction from a different perspective.

BAILEY, MUTH, AND NOURSE AND TWO RELATED INDICES

All three methods discussed next, BMN, C-S, and FHFA, are built on a model where

the expected difference in log prices for two sales of a house is equal to the difference

in the corresponding log indices, along with a random error term. What differs is the

error structure.
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In particular, let there be T 1 1 time periods where sales can occur from 0, 1, ..., T

and t be the subscript for time period. Using the BMN (1963) notation, for a pair of
sales of a given house i, prices and indices are related by the following expression:

P Bit 9 t 9
5 U (1)itt 9P Bit t

where Pit is the sale price of the ith house at the tth time period. For a pair of sales,
t is the time at the first sale and t9 the time at the second (t9 . t). Finally, let Bt denote
the general house price index at time t and Uitt 9 the multiplicative error term for the
sale pair. The model is fit on the logarithmic scale:

p 2 p 5 b 2 b 1 u (2)it 9 it t 9 t itt 9

where p, b, and u are simply the logarithmic versions of the terms in (1). The model
in (2) is fit using linear regression and the estimated log indices are converted into
price indices using the exponential function. Note that only houses that have been
sold twice are used to calculate the index—the remaining observations are omitted.

In the BMN model, the error term Uitt 9 is assumed to have a log-normal distribution:
logUitt 9 N (0, where iid denotes independent and identically distributed.

iid 2, s )u

Therefore, the error variance is constant in the BMN method.

The C-S and FHFA methods both assume that the error term is heteroscedastic,
arguing that the length of time between sales should increase the variance of the log

price differences. The C-S (1987, 1989) method includes three components to the log

error term: individual contributions from each sale 1 and a random walk2 2(s s )u u

representing the time periods between sales ((t 2 t9) The resulting log error term2s ).v

has variance 1 (t9 2 t) On the other hand, the log error term in the FHFA2 22s s .u v

method includes only a random walk to reduce the chance of estimating negative

weights during the fitting process, which is possible in the C-S method. (See Exhibit

5 for this occurring in our data for the S&P/C-S method.) The log error variance as

described in Calhoun (1996) is (t9 2 t)(E[v2] 2 E[vv9]) 1 (t9 2 t)2E[vv9], where v

and v9 are arbitrary steps in a random walk and E[.] is the expectation function.

While the error structures differ, both follow the same fitting procedure: (1) estimate

the log index using regression (stopping here results in the BMN index), (2) estimate

the variances of the log error terms by using the residuals from the first step, and (3)

estimate the log index again using the weights computed by taking the reciprocal of

the estimated standard deviations of the log error terms from step (2). Accordingly,

the larger the gap time between sales, the lower the weights of the sale pairs in the

final regression.

Note that the reciprocal of the standard deviation estimates are used as weights;
however, the standard generalized least squares procedure uses the reciprocal of the
estimated error variances not standard deviations as weights. Consequently, the C-S
and FHFA indices are unbiased but do not have the lowest possible variance. This is
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undesirable especially if the regression estimates are to be used for prediction or for
constructing confidence intervals.

S&P/CASE-SHILLER METHOD

A variation of the repeat sales estimator proposed by Shiller (1991) is currently used
to construct the S&P/Case-Shiller Home Price Index released by Standard and Poor’s
(2009). The S&P/C-S index is published for 20 Metropolitan Statistical Areas (MSA)
and nationally. The S&P/C-S index is constructed from sale prices as opposed to log
sale price differences. As a result, it is considered an arithmetic index rather than a
geometric index. However, the S&P/C-S index is fit following a similar three-step
procedure as the C-S and FHFA indices but does incorporate instrumental variables.

As before, we have T 1 1 time periods from 0, 1, ..., T. For house i:

P 5 b P 1 U first sale at time 0,i0 t 9 it 9 i0t 9

0 5 b P 2 b P 1 U first sale at time t . 0 (3)t 9 it 9 t it itt 9

where Pit is the sale price of house i at time t, bt is the inverse of the index at time
t, and Uitt 9 N (0, 1 (t9 2 t) where and are the same variances from

iid 2 2 2 2, 2s s ) s su v u v

the original C-S index. The price index is Bt 5 1/bt.

The response vector in (3) contains mostly zeroes as the vast majority of sales do not
occur in the base time period (t 5 0). For those that do, note that the model is
structured so that future sales are used to explain a preceding sale, which is not
intuitive.

The most important issue to note here is the error structure. The original C-S method
specifies the error variance on the log scale to be 1 (t9 2 t) The S&P/C-S2 22s s .u v

index has the same model error variance despite the error being on the price scale
and the index not being constructed from the differences of prices (or log prices).
This error structure, as a result, does not follow directly from the BMN model setup
and is imposed arbitrarily, making interpretation difficult; Meissner and Satchell
(2007) observe this inconsistency as well.

AUTOREGRESSIVE MODEL

The AR method, proposed in Nagaraja, Brown, and Zhao (2011), is a variant of the
hybrid index proposed by Case and Quigley (1991): it contains only ZIP Code as a
hedonic variable and incorporates single sales. However, there are some key
differences. An alternate approach to house price modeling is to consider a sale not
as one of an isolated pair but rather as one of a series of sales. The AR model
considers all sales of the same house as components of one series. Therefore, the
entire dataset is comprised of thousands of short series, one series for each house.
For single sales, the series has a length of one.

In theory, a house has a price at each time period. However, the price is observed
only when the house is sold. These are the prices in the data set. Consequently, we
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can think of each house price series as an autoregressive process that is observed
when a sale occurs. Single and repeat sales are incorporated naturally under this setup;
furthermore, gap times are simply the periods where house prices are not observed.

This log price model contains three components: (1) a log time effect, (2) weak
hedonic information through the use of ZIP Code as a proxy for location, modeled
using a random effects term, and (3) an underlying stationary, autoregressive process
that handles the serial nature of house sales. The log time effect, which is converted
into an index by exponentiating and dividing by the base period value, is comprised
of information from both single and repeat sales homes, the latter receiving a much
higher weight because more information is known about repeat sales houses through
having multiple observed prices.

In particular, let pi,j,k be the log price of the jth sale of the ith house in ZIP Code k.
We define the notation t(i, j, k) to indicate the time period t where the jth sale of the
ith house in ZIP Code k is sold. Let m 1 bt(i,j,k) be the log time effect for time period,
t(i, j, k), and let g(i, j, k) be the gap time, or t(i, j, k) 2 t(i, j 2 1, k), if it
is the second or higher sale. Finally, ZIP Code is modeled as a random effect:
tk N (0, Then,

iid 2, s ).t

p 5 m 1 b 1 t 1 « j 5 1i,1,k t(i,1,k) k i,1,k

g(i,j,k)p 5 m 1 b 1 t 1 f (p 2 m 2 b 2 t ) 1 « j . 1. (4)i,j,k t(i,j,k) k i,j21,k t(i,j21,k) k i,j,k

The error distributions are as follows: N (0, /(1 2 f2), «i,j,k N (0,
iid iid2« , s ,i,1,k «

) /(1 2 f2), and all «i,j,k are assumed to be independent. The adjusted2 2g(i,j,k)s (1 2 f«

log price value, pi,j,k 2 m 2 bt(i,j,k) 2 tk, a stationary first order autoregressive time
series (AR(1)) with autoregressive coefficient f where uf u , 1. Maximum likelihood
estimation is used to fit this model. Details can be found in Nagaraja, Brown, and
Zhao (2011).

Intuitively, we would expect that the previous sales price of a house is less valuable
the larger the gap time. The AR model naturally produces this feature in two keys
ways. First, as gap time increases, the correlation between the adjusted log prices
between sale pairs (however you want to define them) decreases. Second, an indirect
effect, as gap time increases, the error variance increases in the model (see the
expression for «i,j,k).

Furthermore, the error variance is much larger for single sales («i,1,k) as opposed to
repeat sales («i,j,k) as less information is known about the former. As a result, single
sales are less influential in the model estimation than repeat sales as influence is
inversely proportional to the variance.

QUALITATIVE COMPARISONS

There are five main conceptual differences among the indices outlined in the previous
section: (1) single and repeat sales, (2) effect of gap time on sale prices, (3) use of
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Exhibit 2

Error Variance in the Fitted Model (g is gap time)

Index Error Variance

BMN s 2

FHFA g(E[v2] 2 E[vv9]) 1 g2E[vv9]

C-S 2 22s 1 gsu v

S&P/C-S 2 22s 1 gsu v

AR / (1 2 f2)2 2gs (1 2 f )«

hedonic information, (4) treatment of more than two sales, and (5) geometric versus
arithmetic index construction.

SINGLE AND REPEAT SALES

There are two consequences of excluding single sales. First, to have sufficient data to
construct a stable index, larger geographical areas may be required. While data
spanning a longer period will result in a higher number of repeat sales, the number
of newly built houses also increases. Unless the geographical area in question is
extremely stable such as the Herengracht Canal area in Amsterdam studied by
Eichholtz (1997), the proportion of repeat sales among all house sales does not
increase as fast as one might expect.

Second, repeat sales homes may be fundamentally different from single sales homes,
resulting in biased indices, as shown in Case, Pollakowski, and Wachter (1991). If
true, then indices derived only from repeat sales homes are indicative of changes in
such homes at best, not the entire housing market. It has been hypothesized that a
higher proportion of repeat sales are ‘‘starter homes,’’ which are soon traded for larger,
costlier, and nicer homes after only a few years (Clapp, Giaccotto, and Tirtiroglu,
1991). Meese and Wallace (1997) do find significant differences while Clapp,
Giaccotto, and Tirtiroglu (1991) have inconclusive results. The autoregressive method
attempts to take a middle ground on this issue by including both single and repeat
sales, placing more emphasis on the repeat sales information.

EFFECT OF GAP TIME ON SALE PRICES

The role of gap time is an important issue for each of the five indices. Intuitively, one
would expect the time between sales to affect the usefulness of the previous sale price.
The BMN method is the only technique that does not include this feature. The C-S,
FHFA, and S&P/C-S methods incorporate gap time into the error structure, but in
very different ways. Finally, the AR method includes gap time in the error structure
as an inherent statistical consequence of the underlying autoregressive component in
the model. Exhibit 2 lists the theoretical error variance for each method, where g is
the gap time between sales.
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In order to see whether each method captures the respective error variance, we
compare the estimated variance and gap time relationship with the empirical data. We
show results for two typical cities: Orlando, Florida and Philadelphia, Pennsylvania.
In each plot in Exhibits 3 and 4, the expected variance given a gap time is plotted
(line) and the variance of the training set residuals for each gap time are plotted
(points). These residuals (residual 5 observed price 2 predicted price) are computed
from predicting the second sale of sale pairs in the training set from each model. The
former represents the theoretical variance (from Exhibit 2) and the latter the empirical
variance. Some gap times contain very few sale pairs; those with 15 or fewer
observations are indicated with an ‘‘x.’’ Note that only the S&P/CS results are on the
price scale as it is the only method fit on the price scale.

From these plots we can determine whether the theoretical error variance, as specified
by each model, matches the empirical results for each city. It is clear that the error
variance is indeed dependent on gap time and the BMN method performs worst in
this regard. The FHFA supposes a parabolic relationship, which is not entirely
supported by the empirical results. The C-S and S&P/C-S methods seem to be the
best at capturing the error variance. The AR method’s theoretical error variance seems
to follow the empirical error variance better for Orlando than for Philadelphia; the
remaining cities show varied results as well.

For the AR method only, the gap time has a second role: the fg term in (4). As the
gap time increases, the correlation between adjusted log sale prices decreases
following fg. This feature has a larger effect, and therefore, more important function,
than the gap time and error variance relationship. For more details, refer to Nagaraja,
Brown, and Zhao (2011).

HEDONIC INFORMATION

In practice, repeat sales methods are popular in part because they require little
information about each sale: time of sale, price, and a unique house identifier.
However, for these data to be sufficient, we must make an assumption: only sales of
an identical house should be compared. There are a few ramifications of this strong
assumption. As Englund, Quigley, and Redfearn (1999) discuss, houses that have
significantly improved or deteriorated between sales should be removed as they violate
the equivalence property. Obtaining quality data on these changes can be difficult.
Palmquist (1982) proposes a depreciation factor to account for age. This factor could
ostensibly be applied to any of the five methods discussed in this paper. However,
any depreciation method used requires additional information about the property, and
this is often unavailable.

Finally, it is implicitly assumed within the equivalence property that the previous sale
price is an adequate proxy for hedonic characteristics. Therefore, no additional
information about the house is required and the influence of the hedonic characteristics
must not change over time. There is some evidence that this may not be the case.
Case and Quigley (1991) propose a hybrid model that shows the utility of
incorporating hedonic variables in repeat sales models (in addition to including single
sales and homes that have changed significantly). Gillen, Thibodeau, and Wachter
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Exhibit 3

Variance by Gap Time for Orlando, FL
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Exhibit 4

Variance by Gap Time for Philadelphia, PA
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(2001) show that single-family house prices are spatially autocorrelated in
Philadelphia. The AR model adds a location effect through ZIP Code and it acts as
a useful hedonic variable (see our prediction results for evidence).

TREATMENT OF MORE THAN TWO SALES

The BMN, C-S, FHFA, and S&P/C-S methods are designed for homes that sell only

twice. Little consideration is given for homes that sell more than twice and how to

construct appropriate sale pairs. For example, if there are three sales, pairs can be

constructed as (first, second) and (second, third). Alternatively, we could construct

(first, second), (first, third), and (second, third). In this paper, we consider only the

first pair construction method.

Under those conditions, BMN (1963) suggest adding a fixed effect for property or

computing a weighted regression where the impact of each sale pair with a sale that

appears in another sale pair is split across sale pairs. In the C-S method, the covariance

across sale pairs with common sales is Cov(pit 9 2 pit, pit 0 2 pit 9) 5 , which can2
2su

be incorporated into the weight matrix; the S&P/C-S method, with the identical error

structure, would have a similar setup. In the FHFA method, the correlated random

walk steps create a very complex relationship across sales. In particular, Cov(pit 9 2

pit, 5 (t9 2 t)(t0 2 t9)z, where z 5 E[vv9]. Technically, these correlationp )it 02pi t9

structures can be incorporated into the respective models even though none of the

methodologies do so. As three or more sales of a single house is relatively uncommon,

in data sets like ours, this additional step can be ignored with minimal loss. On the

other hand, the AR method has a coherent treatment of multiple sales. This is because

the model handles homes not as components of sale pairs but rather as a single series

of sales. As a result, there is no need for any adjustments.

GEOMETRIC VERSUS ARITHMETIC INDICES

The S&P/C-S index is the only method that is an arithmetic index. It is fit on the

price scale, whereas the BMN, C-S, FHFA, and AR indices are all fit on the log price

scale and are therefore geometric indices. That is, when the models are transformed

from the log price scale to the price scale, the additive model (on the logarithmic

scale) becomes a multiplicative model (on the price scale). Shiller (1991), Goetzmann

(1992), and Goetzmann and Peng (2002) all argue that arithmetic house price indices

are more appropriate, and perhaps less biased, than geometric indices. They have two

main reasons for this claim. First, they suggest that changes in prices are more easily

interpreted as changes in dollar amounts as opposed to percentage changes

(logarithmic). Second, by virtue of being fit on the price scale, arithmetic indices are

what Shiller (1991) calls ‘‘value-weighted.’’ This concept could be relevant if more

expensive homes behaved differently than less expensive ones. Geometric indices treat

all houses roughly the same in terms of log price (but not necessarily by gap time).
If different house price levels should be treated differently, then it may be better to
construct separate indices.
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QUANTITATIVE AND INDEX COMPARISONS

In this section, we explore the differences among the indices in an applied setting in
terms of predictive performance and index construction.

PREDICTION RESULTS

All five indices are constructed from base models for house price; therefore, prediction
of individual house prices follows quite naturally as an evaluation technique. Note
that in this step, we do not attempt to forecast future individual home prices. None
of the methods have this feature. Rather, house prices will be estimated using a
subsample of the data not used to fit the model. In essence we are predicting prices
within the scope of the data set, rather than forecasting prices at times outside this
time span.

Each method is fit using the training data set. The sale price for each house in the
test set is then predicted. For the methods fit on the log price scale (BMN, C-S,
FHFA, AR), the log price prediction is converted to the price scale as explained in
Nagaraja, Brown, and Zhao (2011). To compare performance across methods, we use

the root mean square error (RMSE) defined as: RMSE 5 , wheren 2ˆÏ1/n o (P 2 P )i51 i i

Pi is the sale price of house i in the test set, denotes its predicted price, and n isP̂i

the number of observations in the test set. The results are calculated and reported
separately for each of the 20 metropolitan areas in Exhibit 5.

Note, there is no RMSE value for the S&P/C-S method for Kansas City, Missouri.
At the second step of the procedure, some of the computed weights were negative,
which prevented the final index values from being calculated. Recall, that this is the
type of problem that the FHFA method tries to avoid.

The RMSE value provides information about the following question: On average, how
well does this model do when applied at the micro level? The answer may be of
interest even when an index is the overall end goal. Predictions, however, also provide
a better quantitative measure of the effectiveness of the index in describing market
trends. Using this metric, we find that the four traditional repeat sales methods have
RMSE values that are quite similar to each other. Hence, the ‘‘improvements’’ made
to the BMN model result in only minor changes to the RMSEs. However, the AR
index performs best.

Components of the AR Model: The AR method has three components: (1) the
autoregressive process, (2) inclusion of ZIP Code, and (3) use of single sales. Feature
(1) combined with the log time effect form the basis of the model. On the other hand,
components (2) and (3) have been added to the fundamental model. We fit three
additional versions of the AR model to explore these components: AR model without
ZIP Code (column 7 in Exhibit 5), AR model without ZIP Code fit only on repeat
sales data (column 8 in Exhibit 5), and the AR model with ZIP Code fit only on
repeat sales data (column 9 in Exhibit 5). In the latter two versions, the single sales
are removed from the training data set and so are not used in the model fitting process.
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Exhibit 5

Test Set RMSE (in dollars)

Metropolitan Area BMN C-S S&P/C-S FHFA AR

AR

(No ZIP)

AR

(No ZIP, No

Single Sales)

AR

(ZIP, No

Single Sales)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Ann Arbor, MI 53,709 53,914 52,718 54,024 41,401 44,362 42,639 39,825

Atlanta, GA 35,456 35,494 35,482 35,503 30,914 33,977 33,595 29,002

Chicago, IL 42,923 42,960 42,865 42,976 36,004 39,202 38,910 34,623

Columbia, SC 42,207 42,263 42,301 42,290 35,881 36,377 35,136 34,789

Columbus, OH 30,550 30,543 30,208 30,545 27,353 28,126 27,656 26,196

Kansas City, MO 27,682 27,724 — 27,730 24,179 24,964 24,819 23,164

Lexington, KY 21,748 21,740 21,731 21,741 21,132 21,501 21,602 20,832

Los Angeles, CA 41,918 41,949 41,951 41,959 37,438 41,006 40,856 37,567

Madison, WI 30,979 30,942 30,640 30,950 28,035 28,687 28,464 27,317

Memphis, TN 25,311 25,306 25,267 25,311 24,588 25,069 24,782 23,613

Minneapolis, MN 35,402 35,538 34,787 35,565 31,900 33,233 31,904 30,157

Orlando, FL 30,187 30,215 30,158 30,228 28,449 29,317 29,256 27,287

Philadelphia, PA 35,308 35,333 35,350 35,338 33,246 34,736 34,502 32,878

Phoenix, AZ 29,295 29,334 29,350 29,356 28,247 30,232 28,832 26,687

Pittsburgh, PA 30,732 30,812 30,135 30,858 26,406 26,508 26,483 26,058

Raleigh, NC 26,873 26,856 26,775 26,855 25,839 26,564 26,864 25,157

San Francisco, CA 50,513 50,573 50,249 50,499 49,927 50,778 51,347 50,488

Seattle, WA 43,533 43,606 43,486 43,631 38,469 42,330 41,338 36,290

Sioux Falls, SD 21,527 21,576 21,577 21,525 20,160 20,190 20,398 20,334

Stamford, CT 67,661 67,668 68,132 67,579 57,722 61,805 62,688 59,027
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(Note that in the final version, a negligible number of observations in the test set had
to be dropped because they come from ZIP Codes not represented in the training set.)

Traditional repeat sales methods assume that no hedonic information is needed; if
true, ZIP Code should be superious to the model. In this regard, we should compare
the results from column 6 and column 7 of Exhibit 5: the original AR model and the
AR model without the ZIP Code effect component. While the basic model still has
better predictions than BMN, C-S, S&P/C-S, and FHFA methods, the improvement
is much less dramatic than in the AR model including ZIP Code. We conclude that
the location effect is an integral part of the model.

Finally, if repeat sales homes are generally similar to single sales homes, then
including them should improve the prediction of repeat sales home prices in the test
set. However, we find the opposite to be true. In nearly all cases, excluding single
sales from the training set improved the RMSE value. We can see this in Exhibit 5
when comparing column 6 with 9 (AR including ZIP Code) or if we compare columns
7 and 8 (AR excluding ZIP Code). This is confirmation of a difference between single
and repeats sales homes. While, one may argue that the AR model should be fit
excluding the single sales because of improved prediction, we feel it is more important
to model the visible housing market. Furthermore, the inclusion of single sales, like
in the Case and Quigley (1991) hybrid model, increases the apparent precision of
both the index estimates and the predicted prices. This is because, by including single
sales, the sample size used to fit the model increases considerably and thus decreases
the standard error of estimates.

RMSE versus Sample Size. One might expect that the improvements in RMSE for the
AR method over the traditional repeat sales methods would be higher for smaller
cities that have fewer total sales. In Exhibit 6, we plot the percentage of RMSE
improvement of the AR method over the C-S method for each city against the median
number of sales per quarter for the corresponding city (as a proxy for city size). We
find, however, for the AR method there is no discernible pattern in the RMSE
improvement according to city size other than that results are more variable for smaller
cities, which is expected. The one outlier is Ann Arbor, Michigan (labeled on the
graph), which is one of the smallest cities in the data but has the largest RMSE
improvement. Qualitatively similar results are obtained if the C-S index is replaced
with the BMN, S&P/C-S, or FHFA index.

INDEX COMPARISON

Despite the differences in methodology, the traditional repeat sales and the
autoregressive index track each other exceptionally well at the macro level (the indices
were computed using the training set data). For comparative purposes, we include the
median price index. The correlation between each pair of log index return series is
given in Exhibit 7 for Minneapolis, Minnesota (for clarity, we have removed the
bottom half of the table). The high correlations indicate that the general trends match
across indices (except for the median index); however, if we plot the indices for
Atlanta, Minneapolis, and Pittsburgh, as in Exhibits 8–10, we can see that the actual
values of each index differ. These cities were chosen to represent the range of results.
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Exhibit 6

RMSE Improvement Against Sample Size

Exhibit 7

Correlation Among Log Index Returns for Minneapolis, MN

BMN C-S S&P/C-S FHFA AR Median

BMN 1 0.9779 0.9559 0.9654 0.8805 0.4154

C-S 1 0.9778 0.9984 0.9093 0.3718

S&P/C-S 1 0.9754 0.8783 0.3894

FHFA 1 0.9130 0.3579

AR 1 0.6023

Median 1

The plot on the left shows the index produced from each method; on the right is the
index at time t subtracted from the average index level at time t (average of the 6
indices). While we only chose these three cities to show, we did obtain similar results
for the remaining cities.

The BMN, C-S, and FHFA indices are nearly all the same; this is not surprising as
the methods applied are similar. The median, S&P/C-S, and AR, indices tend to differ
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Exhibit 8

Indices for Atlanta, GA
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Exhibit 9

Indices for Minneapolis, MN
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Exhibit 10

Indices for Pittsburgh, PA
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Exhibit 11

Percentage of Repeat Sales by Quarter for a Selection of Cities

from the others, but not in any systematic manner. We do note that the AR index is
generally between the median index and the traditional repeat sales indices. This is
most likely because the median index treats all observations as single sales. In
contrast, the repeat sales indices include no single sales, so only repeat sales
information is used. The AR index, on the other hand, includes both repeat and single
sales. The repeat sales information, however, impacts the index more than the single
sales.

The fact that none of the indices is consistently higher or lower than the others could
possibly reflect varying growth rates across the cities. In Exhibit 11, the percentage
of repeat sales homes in each quarter is plotted for a selection of cities. Note that for
this plot only, in any given quarter a house is considered a repeat sale only if it was
sold at least once before. As expected, the percentage of repeat sales homes increases
as we move through time. In the long run, nearly all homes that appear as single sales
will be sales of new homes rather than a more even mix of new homes and homes
that have sold only once in the sample period. The rates of increase differ widely
across cities. After nearly 20 years, the percentage of repeat sales homes is the lowest
for San Francisco, at 41% and the highest for Columbia, South Carolina, at nearly
86%. However, in our data, we cannot distinguish between new homes and singles
sales of old homes. Therefore, we cannot determine how differences in growth rates
across cities affect the indices.

The sample period ends in September 2004, which means that the recent housing
crisis is not included in this analysis. However, there are four areas where the AR
housing index does decrease significantly during the sample period: Los Angeles, CA,
San Francisco, CA, Seattle, WA, and Stamford, CT. These indices are plotted in
Exhibit 12. Apart from Los Angeles, which is described in Nagaraja, Brown, and
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Exhibit 12

Metropolitan Areas Where the AR Index Decreases in Sample Period

Zhao (2011) in more detail, the AR model is a good fit for the data for the remaining
three cities. Therefore, it is possible that the AR model can be appropriate when
housing markets decline, assuming the model is a good fit generally.

CONCLUSION

The five indices, BMN, Case-Shiller, FHFA, S&P/Case-Shiller, and the autoregressive
index are all based upon the repeat sales idea. We have also proposed the use of
individual price prediction as a useful metric to compare indices. Indices are used for
local applications, so price prediction can be useful. Furthermore, all other existing
metrics are qualitative and often very difficult or nearly impossible to test on available
data. Prediction, however, is straightforward and objective and therefore, we feel, an
important part of the index assessment process. All of the methods, other than the
BMN index, incorporate adjustments for gap time; however, only the autoregressive
method also includes single sales and hedonic information in the form of a ZIP Code
effect. The latter feature has been shown to be very important for predictive power.

The question we explore in this paper is how to tell if a house price index is
informative. If usability is key, all of these indices are adequate—all are easy to
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implement and update and do not require much information about a house. If statistical
properties are important, the BMN and autoregressive indices are best. A third
measure is how well the index represents trends in the overall market. Previous
research has shown that repeat sales homes are fundamentally different from single
sales; in light of this work, it is difficult to argue that traditional repeat sales indices
can truly represent the housing market. While all of the indices (including the median
index) exclude houses that do not sell, the median and autoregressive index do include
single sales that can make up a large proportion of total sales. Therefore, in this regard,
these two indices are more representative of the housing market. Furthermore, the
autoregressive index makes better use of the data by taking advantage of the additional
information contained in repeat sales and is a statistical model. However, none of
these standards indicates whether an index is truly measuring what it is supposed to.
We feel the best yardstick in this regard is predictive ability. In this case, the
autoregressive index is the clear winner since for all 20 cities, the RMSE values were
the lowest among all of the indices. In fact, the autoregressive model seems to best
embody what an index should represent.
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